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Abstract

Underwater acoustic signature identification has been employed as a
technique for detecting underwater vehicles, such as in anti-submarine
warfare or harbour security systems. The underwater sound channel,
however, has interference due to spatial variations in topography or sea
state conditions and temporal variations in water column properties,
which cause multipath and scattering in acoustic propagation. Thus,
acoustic data quality control can be very challenging. One of challenges
for an identification system is how to recognise the same target signature
from measurements under different temporal and spatial settings. This
paper deals with the above challenges by establishing an identification
system composed of feature extraction, classification algorithms, and
feature selection with two approaches to recognise the target signature
of underwater radiated noise from a research vessel, Ocean Researcher
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III, with a bottom mounted hydrophone in five cruises in 2016 and
2017. The fundamental frequency and its power spectral density are
known as significant features for classification. In feature extraction, we
extract the features before deciding which is more significant from the
two aforementioned features. The first approach utilises Polynomial
Regression (PR) classifiers and feature selection by Taguchi method
and analysis of variance under a different combination of factors and
levels. The second approach utilises Radial Basis Function Neural
Network (RBFNN) selecting the optimised parameters of classifier via
genetic algorithm. The real-time classifier of PR model is robust and
superior to the RBFNN model in this paper. This suggests that the
Automatic Identification System for Vehicles using Acoustic Signature
developed here can be carried out by utilising harmonic frequency
features extracted from unmasking the frequency bandwidth for ship
noises and proves that feature extraction is appropriate for our targets.

Subject class: 03C45

Keywords: feature identification; acoustic signature; Taguchi method;
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1 Introduction

Underwater acoustic signature identification has been employed as a technique
for detecting underwater vehicles, such as in anti-submarine warfare or harbour
security systems. Passive Acoustic Monitoring (PAM) uses hydrophones for
detecting underwater targets, monitoring underwater habitats over a long
time period [1, 2], or observing underwater seismic activity [3].
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Applying underwater acoustic signature identification for analysing the mas-
sive data from PAM is quicker and easier to use than experienced human
operators (EHO). There are different strategies to enhance the detection
accuracy. First, regarding signal processing and noise reduction [4], Wang
enhanced the target signal by Hilbert-Huang transform [5]. Weiss also applied
a noise reduction and reconstruction technique to high-frequency acoustic sig-
nals by wavelet transforms [6]. Second, utilising feature extraction to increase
identification, Bodisco focused on selecting key features from an electroglotto-
graph signal by Markov-chain Monte Carlo statistical modelling [7]. Third,
regarding classification algorithms, Ribeiro-Fonseca used artificial intelligence
as a classifier to increase the recognition rate of ship noise [8].

Data quality control also is challenging, with problems of ambient noise by
time/space-varying multipaths arising when the underwater acoustic prop-
agation is influenced by ever-changing sound speed profiles under different
topography or sea state conditions [4, 9]. The biggest noise masking issue is
shipping noise masking, as it is a continuous low-frequency anthropogenic
sound [10, 11], but its acoustic signatures are valuable features in anti-
submarine warfare or harbour security systems. Therefore, this research
project used the target signature of underwater radiated noise from a research
vessel, Ocean Researcher III (OR3), with a bottom mounted hydrophones
in five cruises between 2016 to 2017. There are two groups in the data set
classified by EHO. One is the “OR3” (called Target 1, T=1), and the other is
“Non-OR3” (called Target 0, T=0), which includes the ambient noise with
other ship noises, such as cargo ships, naval vessels, fishing boats.

The goal of this study is to identify the two opposing acoustic signatures
from data of different cruises and how to extract the significant features from
time/space-varying target signals (which show that the signal to noise ratio
is unstable in each cruise) for use in the classifier, thereby automatically
identifying the correct target.

Three steps are employed, composed of feature extraction, classification
algorithms, and feature selection, in two approaches for an Automatic Identi-
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fication System for Vehicles using Acoustic Signature (AIS4VAS) compare the
identification (refer to Figure 1) and verify the diagnostic ability via receiver
operating characteristic (ROC) [12, 13, 14], the coefficient of determination
(R2) [15], and correlation coefficient (R).

The process of feature extraction in the two approaches is the same and
compares frequency or power spectral density (PSD), which are significant in
feature extraction. The fundamental frequency (FF) is an inherit property
of the type of the ship and independent of specific time and location of the
ship, but it can be masked by ambient noise because both ship noise and
much of the ambient noise are louder in lower frequencies. The problem is
how to extract FF from the noise masking problem. The process extracts the
“same” FF, which is called “Main Frequency” (MF); its harmonic frequency
(HF); and sound pressure level (SPL) from different cruising data. We define
Occurrence Frequency (OF) and HF from FF, and we present a new definition
by combining Occurrence Times of OF (OT) and Harmonic Times of HF in
OF (HT) when extracting MF. Then, SNR (signal to noise ratio) is utilised to
solve the noise masking problem and quantify the original signal corruption
and meaningful information, which includes combinations of MF, its PSD,
and the interaction of these two terms.

The first approach essentially is curve fitting by the Polynomial Regression
(PR) classifiers to approximate the SNR of the collected data, and statis-
tically analysed using the Taguchi method and ANOVA, and facilitate our
feature extraction. The major difference, is that unlike the standard statis-
tical (polynomial) regression, is that our classifier is constructed from two
complementary surrogate models (OR3 and Non-OR3). We desire to enhance
the prediction based on the accuracy and sensitivity of each models (Table 2).
To reduce the combination of building classifiers from full factor design to
factorial design, we apply the Taguchi method to feature selection, which
could increase the computational efficiency and find the optimal combination
of the controllable factors (Table 3).

The Taguchi method is a cost-driven quality engineering method providing
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Figure 1: Flow chart of Automatic Identification System for Vehicles using
Acoustic Signature (AIS4VAS). (PSD: Power spectral density; FF: Fundamen-
tal frequency; MF: Main frequency; OF: Occurrence frequency; HF: Harmonic
frequency in occurrence frequency; OT: Occurrence Times of occurrence fre-
quency; HT: Harmonic Times of harmonic frequency in occurrence frequency;
PR: Polynomial Regression; ANOVA: Analysis of variance; RBFNN: Radial
Basis FunctionăNeural Network)

optimisation for factorial design to cut the cost and number of experiments
by using orthogonal arrays [16, 17, 18, 20]. Orthogonal arrays are constructed
with a fraction of a full factorial array to save exhaustive testing of every
possible input to the system. It is orthogonal between the factors, and
the factors are independent from each other and in balance (Figure A.1). A
reduced model, made from a general linear model [21], for evaluating classifiers
under the optimal arrangements of versatile models’ factors was analysed
using the Taguchi method and analysis of variance (ANOVA).

The second approach is curve fitting by Radial Basis Function Neural Network
(RBFNN) [22, 23] and feature selection by genetic algorithm (GA) [24] to
find the optimising parameters of the classifier. The neural network is a
processing system in artificial intelligence that mimics a biological neural
network, using artificial neurons (consisting of processing units and nodes)
for parallel computing. The advantages are that it has strong curve-fitting
operations for nonlinear models, its model has good prediction, and has been
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performed in many areas of signal processing. This study utilises RBFNN,
which consists of a hidden layer of a nonlinear transfer function-radial basis
function network (RBF) and a linear output layer. Since the neural network
learns by adjusting the weighting value and the bias in each iteration, the
setting of the training parameter will affect the performance of network.
Therefore, this approach of this study is combined with the GA to find the
global optimum training parameters.

We developed this AIS4VAS, which extracts the essential features of the
acoustic signature, utilises factor analysis in feature selection, and builds the
classifier by two approaches. Then, we compare the performance with PR
and RBFNN [25, 26].

2 Data acquisition

From December 2016 to August 2017, we completed six sets of field ex-
periments on the southwestern coast of Taiwan, as seen in Table 1 and
Fang [27, 28]. The whole audio data came from the radiated noise of OR3
ship noise, including idle testing (500 revolutions per minute (rpm) of main
engine) and cruising speed testing (600 to 800 rpm) by bottom mounted PAM.
The procedure of measurement of underwater sound from ships was according
to the standards of Det Norske Veritas (DNV) Part 6 Chapter 24- Silent class
notation for ships [29], the International Organisation for Standardisation
(ISO) 17208-1: Acoustics- Part1 [30], and Bureau Veritas (BV) Underwater
Radiated Noise (URN) rule note 614 [31].

From Table 1, the first to fifth voyages recorded the OR3 signatures under
idling, cruising, and optimisation idling tests. At a minimum, the line track
cruising test required two runs for either port or starboard aspect measurement
under different engine operation conditions, and the test course configuration
refers to ISO 17208-1 [30] and Figure 2(A). The line track was from K1 to
K2, and M1 was the hydrophone location. The distance from a source to
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Table 1: Introduction of data sources and experimental locations (Introduction
of data samples (each dataset: 3 mins)).
Voyage Date Location (Taiwan) OR3 (T=1) Non-OR3(T=0)

Idle Cruise PAM
1 2016/12/26 Changhua offshore 18 39 67
2 2016/12/27 Kaohsiung offshore 25 33 0
3 2017/04/06-04/10 Kaohsiung harbour 206 0 0
4 2017/06/05 Liuqiu offshore 5 39 5

2017/06/05 Kaohsiung harbour 25 0 0
5 2017/08/02 - 08/15 Miaoli offshore (PAM) 0 0 318

Total number 390 390

hydrophone was between 150 and 200 meters, which is called the closest
point of approach (CPA), but we adjusted the CPA to 700 meters for the
experiment performed on December 27th, 2017 due to high marine traffic
rate in order to avoid collisions with other seas at sea. The bottom-anchored
hydrophones deployment, the range of CPA, and the minimum depth under
vessel followed DNV rules [29] and ISO 17208-1 [30] (Figure 2(B)).

As data acquisition was difficult from ocean experiments, the total number of
OR3 targets was 390 and each sample set contains 3-minute data length. The
other 318 samples of Non-OR3 were collected from a bottom mounted PAM
hydrophones offshore near Miaoli from August 2 to 15 in 2017, which also
extracted 3-minutes of data from each hour. The Non-OR3 samples included
the ambient noise and ship noises of outboard, skiff, yacht, trawler, fishing
boat, patrol boat, cargo boat, for example. The recording quality of Non-OR3
samples had no limitation of CPA and no cruising track configuration, but
the hydrophone deployment still followed DNV rules.

All signatures were collected via Wildlife Acoustics instruments: Song Meter
Ultrasonic autonomous submersible marine recorders (types: SM2M and
SM3M) with hydrophone sensitivity (-164.5 dB re 1V/1µ Pa) and gain (0
dB).

Figure 3 shows the typical acoustic signatures of ship noise from line track
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Figure 2: (A) Geographical position of the study area (Liuqiu offshore,
Taiwan), with acoustic station indicated; (B) The designed hydrophone
deployment of field experiments.

(A) Line spectrogram (B) Continuous spectrogram (C) Mix spectrogram

Spectrogram on straight experimental line
Location: 22˚ 22.746, 120˚ 20.101; Device: Wildlife SM2M; Sensitivity: -164.5 (dB re 1 μPa) 

Figure 3: The three typical types of acoustic signatures from ship noise (The
spectrogram is from line track cruising on 27 December 2016)
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cruising on 27 December 2016. The three typical signatures from ship noise,
called mixed spectrogram, consist of line spectrograms and continuous spec-
trograms [32]. Line spectrograms are usually caused by mechanical noise or
propeller blade tones, and its harmonic tone comes from the resonance of the
propeller under low speed. Continuous spectrograms are connected with a
different firing rate of the engine and the blade rate of the propeller under
high speeds. The mixed spectrogram will be affected by the rotational speed
of mechanisms and variations of loading the propeller for different sea states.
Therefore, the feature extraction of this paper will illustrate how to extract
FF by slot-pole noise, fire rate, and blade rate; HF and PSD.

3 Feature extraction

In the procedure of feature extraction, the first step is to extract FF from
acoustic signatures. The second step is to extract the “same” FF which is
called “Main Frequency” (MF); its HF; and sound pressure level (SPL) from
different cruising data. In this procedure, there are newly defined terms,
explained as follows.

We used the Short Time Fourier Transform (STFT) [8] to get the spectrum
information. The acoustic pressure was calculated using a 1-s Hamming
window with 10% overlap under 48k sample rate (fs) for each 3-minute data
set. Second, we smoothed the instantaneous noise peak by Exponential
Moving Average (EMA) [33] and Gaussian smoothing filter [34]. Moreover, we
only extracted the peak pressure value (P̂) from 95% of total energy. Filtering
the low frequency and high frequency noise for each minute of data results in
the filtering pressure value.

The frequency index of selecting 95% peaks under each bandwidth (BW) was
set as the FF (as F̂). It is extracted from 3-minute data under seven BWs.
The frequency range of each BW was BW1 (10-49 Hz), BW2 (50-99 Hz), BW3
(100-249 Hz), BW4 (250-499 Hz), BW5 (500-749 Hz), BW6 (750-999 Hz),
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Feature extraction

Figure 4: Flow chart of feature extraction.(MPDF: Marginal Probability
Density Function; OF: Occurrence frequency; HF: Harmonic frequency in
occurrence frequency;OT: Occurrence Times; HT: Harmonic Times; DT1:
Detecting Threshold one; OFR: Occurrence Frequency Ratio; HFR: Harmonic
Frequency Ratio; N: normalised)

and BW7 (1000-2000 Hz) which refers to the x axes of Figure 7, Figure A.1
and Figure A.2.

New definitions in this paper are Occurrence Frequency (OF) and Harmonic
Frequency (HF). The occurrence frequency (F̂O) and HF (F̂H) both belong to
FF (F̂) and are a positive integers.

Other new definitions are OT (Occurrence Times of OF) and HT (Harmonic
Times of HF in OF). OT is the number of times that OF repeatedly occurs
within a set of data of a 3-minute time frame with each being obtained under
different conditions. We remark that OT may not be the same at different
occasions; hence, a repetition of signals is seen as a universal characteristic
frequency that will be addressed in the following paragraph. HT is the number
of times that HF appears in OF.

F̂O, F̂H ∈ F̂ & F̂H ∈ σF · F̂O,where σF ∈ Z+. (1)

In order to extract the acoustic signature for a particular type of ship, we will
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repeatedly extract signature frequencies within a set of 3-min data, acquired
at different occasions. This can be referred to as occurrence frequencies (OFs).
The signature frequencies within each 3-min data is termed as occurrence
frequencies (OFs). Each of these OFs will be weighted throughout the set of
all 3-min data, where the weight is the number of occurrences of each OF
across all datasets, which is termed as OT here. Hence, we can infer a certain
OF to be the acoustic signature of the ship when its associated OT is high
and vice-versa. This leads to HT, which is the number of instances that HF
appears in OF.

The total number of OR3 target data is 390 sets from Table 1. We randomly
chose 33 from the 332 (OR3 and Non-OR3 samples) to be a training sample,
and we repeated the probability of selection until the total number of samples
reached 101 sets (n̂=101). We followed the above procedure to get OT and HT
from each set. Examples of calculating the OT and HT and their correlation
are in Appendix A.2.

To compare what is significant in feature extraction, we present a new defini-
tion by combining OT and HT, which is a weighting function (DT1) in this
paper. DT1 is a kind of threshold to determine the ratio of OT and HT when
extracting MF from FF.

DT1(OT ,HT ,OFR) = N(OT) ·OFR+N(HT) ·HFR,

where HFR = 1 −OFR;OFR(L) =


1,L = 1,
0.5,L = 2,
0,L = 3,

(2)

where L is the level of the factor in Table 3. In this weighting function, we
define OFR (Occurrence Frequency Ratio) and HFR (Harmonic Frequency
Ratio) as weighting values for the ratio of OT to HT. These weighting values
of OFR will be the first controllable factors in curve fitting (refer to Table 3),
and they compare three different occasions under OFR=1 (only observe the
effect of OT), OFR=0 (only observe the effect of HT), or OFR = 0.5 (observe
the interaction of half OT and HT).
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The second controllable factor (refer to Table 3) is defined as “Threshold”
(DT2), and its setting value is 0 < DT2 < DT1 . DT2 is like the second
filter, which removes the frequency that does not exceed the threshold of the
weighting function (DT1), which is

DT1 = [DT1,1,DT1,2, ...,DT1,q] = {DT1,q|DT1,q > DT2,q 6 w},

where DT2(L) =


0,L = 1,
mean(DT1),L = 2,
median(DT1),L = 3,

(3)

where q is index number of DT1 and w is the index number of F̂ and P̂ (refer
to Equation (A.3) and Equation (A.4)). After filtering by DT2, the remaining
frequency as the main frequency (MF, F̃)

MF = F̃ = [F̂1, F̂2, ..., F̂q] = {F̂q|DT1,q > DT2,q 6 w}. (4)

Thus, we can get the power spectrum density (PSD) of MF at different BWs.

PSD = 20 · log(P̂/Pref) + Sensitivity+Gain, (5)

where Pref = 1µPa. Calculating the sensitivity of hydrophone and the
gain of amplifier setting values in Equation (5) will remove the effect from
instruments.

After extracting MF from the aforementioned 101 sets of OR3 target and 101
sets of Non-OR3 target, the third controllable factor (Table 3) is SNR (signal
to noise ratio), which is the input samples of PR and RBFNN. Signal to Noise
Ratio (SNR) is the following mathematical formula used in statistics to find
the meaningful information of training samples. The meaningful information
is included with MF, PSD of MF, and the interaction of these two terms.

SNR = 10 · log10(
µ2

σ2 ),

where SNR(L) =


SNR(MF),L = 1,
SNR(PSD),L = 2,
SNR(MF) · SNR(PSD),L = 3,

(6)
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where µ is the mean and σ is the standard deviation of MF or PSD under
different levels.

4 First approach: Polynomial Regression
(PR)

Our first approach essentially was using the PR classifiers and feature selection
by Taguchi method and ANOVA under different combinations of factors and
levels (Table 3).

4.1 Classifier

Before curve fitting, we scaled SNR and utilised the unity-based normalisation
as Equation (A.1). The PR classifiers were curve fitting the aforementioned
Zdata = N(SNR) (Z plane) by the least square method (the derivatives are
mentioned in Appendix B.1) and are

Ẑ = Xd ·β ·Yr+ ϕ̂, where d = 0, 1, 2, ...,OXΛ, r = 0, 1, 2, ...,OYZ, (7)

ϕ̂ = Zdata − Ẑ. (8)

The X plane is a matrix from one to seven BWs, where β is the matrix of
coefficient estimates for a multilinear regression on X plane, d is the setting
value of power of building X plane and also the controllable factors “E” from
Table 3. The Y matrix consists of the controllable factors “D” from Table 3,
along with the training set size (101 in this paper), where r is the setting
value of power from YZ plane. Equation (8) is the residual, which is the
observed deducted from the predicted value. To minimise the residual as a
optimising procedure of the classifier, we need to set a threshold of tolerance
of error, which is called “DT3” in this paper, following the detection decision
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Table 2: A confusion matrix of receiver operating characteristic (ROC)
T=1 (OR3) T=0 (Non-OR3)

T̂pr=1 (OR3) True Positive False Positive
TP = P(T̂pr=1 ∩T=1) FP = P(T̂pr=1 ∩T=0)

T̂pr=0 (Non-OR3) False negative True Negative
FN = P(T̂pr=0 ∩T=1) TN = P(T̂pr=0 ∩T=0)

Accuracy (ACC) = (TN+TP)/(TN+TP+FN+FP)

Table 3: Combinations of controllable factors and levels for Taguchi L27(313)
design.
Factor Description Level 1 Level 2 Level 3
A OFR (weighting of DT1) 1 0.5 0
B DT2 (threshold of DT1) 0 mean(DT1) median(DT1)
C Regression input SNR(MF) SNR(PSD) SNR(MF)·SNR(PSD)
D OYZ (the power of Yr) 5 4 3
E OXΛ (the power of Xd) 6 5 4

(Equation(9)) to obtain the target value from model T̂pr (one is OR3 and
zero is Non-OR3). The detection decision (f̃(ϕ̂,DT3))

T̂pr = f̃(ϕ̂,DT3) =

{1, T̂∈OR3, ϕ̂6DT3,

0, T̂∈Non-OR3, ϕ̂>DT3,

where 0 6 DT3 6 0.5 and 0 6 ϕ̂ 6 1.

(9)

After getting the T̂pr from the 101 samples, we utilised receiver operating
characteristic (ROC) to verify the performance of the two opposite models
by PR. From ROC, calculating the probability of true positive (TN), true
negative (TP), false negative (FN), and false positive (FP) by the targets
from the model (T̂pr) and from the observation (T), then the accuracy (ACC)
is obtained from Table 2.

In Table 3, Factor A compares the significance of OT, HT, or both; B is
a threshold of feature extraction; C compares the significance of frequency,
pressure, or both; and D and E are the parameters of building the “classifier”.
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If we consider the whole combination of Table 3, we need to build 243 classifiers.
To increase the computational efficiency and optimise the parameter design,
we applied Taguchi method on feature selection in the next subsection.

4.2 Feature selection

We utilised L27(313) OrthogoShort Time Fourier Transformnal Array (Ap-
pendix B.2: Figure B.1), which was composed of five controllable factors with
three levels (Table 3). The original combination of Table 3 is 243, and the
final one is only 27 through L27(313).

The quality characteristic of Taguchi method in this paper utilised the detec-
tion accuracy of classifier (ACC) and belonged to a larger-the-best character-
istic of Taguchi specified situation [16]. The formula of S/NLTB is not like
SNR from Equation (6) and is given as

S/NLTB = −10 · log10[
1

p

p∑
jj=1

1

ACC2
jj

], (10)

where p is the index number of training samples as Equation (10), jj is the
index number of ACC, and ACC is calculated from Table 2.

This study used ANOVA to identify the significant controllable factors by
analysing the main effect and the interaction of factors. The ANOVA results
are presented in Table 4. The sum of squares (SS ) is a tool to determine
which of those five factors is insignificant. Since the SS of Factor B and the
interaction of Factors A and B were much smaller than the others, we pulled
those two terms. DOF is degrees of freedom. MS is mean square or called
variance, which is calculated by SS/DOF. F value is given by MS/MSE,
which determines which variance is significantly different from others. MSE
is the variance of the error and is 0.089 from Table 4. F0.05 is F statistic in
ANOVA testing and is built on the critical value at 0.05 of F-test. If the F
value was larger than F0.05, we rejected the null hypothesis and the factor was
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Table 4: ANOVA of S/N for the L27(313) design in Table 3.
Factors SS DOF MS F−test F0.05 Pvalue SS’ Contribution(%)
A 4.687 2 2.343 26.409 5.143 0.001 4.509 13.67%
B (0.050) (2) - - - - - -
C 3.085 2 1.543 17.384 5.143 0.003 2.908 8.82%
D 2.802 2 1.401 15.791 5.143 0.004 2.625 7.96%
E 4.154 2 2.077 23.405 5.143 0.001 3.976 12.06%
AxB (0.483) (4) - - - - - -
AxC 1.670 4 0.418 4.706 4.534 0.046 1.316 3.99%
AxD 6.487 4 1.622 18.277 4.534 0.002 6.133 18.60%
AxE 9.559 4 2.390 26.932 4.534 0.001 9.204 27.91%
Error 0.532 6 0.089 2.307 7.00%
Total 32.978 26 *Note: At least 95% confidence 32.978 100.00%

statistically significant. The p-value is a probability that is calculated from
an F-distribution with DOF. Pure sum of squares (SS’) deducts the effect of
error term from SS. The confidence interval (CI ) of the estimated value with
95% confidence level is calculated by the t-distribution.

CI = tâ/2(dfE)

√
MSe
ne

(11)

where dfE is the degree of freedom of the error, which is 6; ne is the effective
sampling number; and α̂ is the significance level, which is 0.05. After applying
Equation (11), CI is 0.421 dB.

The ANOVA showed that the significant interactions were “A and E,” “A and
D,” and “A and C,” which also were shown in Figure 5. From Figure 5(A), there
were two optimal combinations, which were A1E1 or A3E2. Following those
combinations and referring to Figure 5 (B) and (C), we obtained A1C3D2E3
and A3C3D1E2. After obtaining these combinations, we utilised generalised
linear regression to build a reduced model for evaluating the classifier under
different levels with various factors. The reduced model η̂(Ai,Cj,Dm,En) is
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expressed as Equation ((12)):

η̂(Ai,Cj,Dm,En) = η̄Ai,Cj + η̄Ai,Dm + η̄Ai,En − 2η̄Ai ,

where i, j, m and n=1, 2, 3.
(12)

where η̄A is the mean of S/NLTB under “factor A with i level,” η̄AC is the
mean of S/N under the interaction of ”factor A with i level” and ”factor C
with j level,” and so on. After R-square testing of the reduced model (η̂), the
results show that R2= 98.39%, R2

Adj= 93%, PRESS (Prediction Error Sum
of Squares)= 10.78, and R2

Pred= 67.31%. Therefore, the reduced model is
statistically proven to predict the S/NLTB of response for the combinations
of factors and level settings.

Comparing with the combinations of A1C3D2E3 and A3C3D1E2 from the
reduced model, we evaluated which is a robust combination of classifier, by
the S/NLTB (refer to Equation (12)), the detection accuracy of classifier (ACC,
refer to Table 2 and Table B-1 in Appendix B.3) and Kolmogorov-Smirnov
(KS) value (refer to Appendix C: Equation (C.3)). The larger of S/RLTB,
ACC and KS, the better performance is. According to the Figure 6, the blue
points of Case 1 (A1C3D2E3) and Case 2 (A3C3D1E2) were all located on the
better detection boundary. The blue points were the samples, and the red line
was a boundary line of random guesses. “Case 1” was uniform distributed on
False Positive Rate (FPR, refer to Appendix C: Equation (C.2)) from 0.2 to
0.4, but “Case 2” was uniform distributed on True Positive Rate (TPR, refer
to Appendix C: Equation (C.1)) from 0.6 to 0.85. In our identifying decision,
we focused on more stable True Positive Rate than False Positive Rate, so
that the final robust classifier was under the combination of A3C3D1E2 no
matter whether from the R-square statistics or the performance (ACC and
KS) in ROC space by statistics in Figure 6 and Table 5.

Case 2 of the first approach used binary fifth order nonlinear regression model
where detection accuracy (ACC) was 81.22% and was better than the lower
order term of Case 1. Therefore, the final classifier following the robust
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Figure 5: Interaction plots for S/N.
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Table 5: Evaluating two classifiers with S/RLTB, detection accuracy (ACC)
of classifier and Kolmogorov-Smirnov (KS) value.

Case Classifier S/RLTB (dB) ACC (%) KS
1.(A1C3D2E3) Ẑ = X4 · β · Y4 + ϕ̂ -3.27 dB 68.79 % 0.78
2.(A3C3D1E2) Ẑ = X5 · β · Y5 + ϕ̂ -2.65 dB 81.22 % 0.86

Figure 6: The distribution of receiver operating characteristic (ROC) space
under the optimal condition of (A) Case 1: A1C3D2E3; (B) Case 2: A3C3D1E2.

parameter design (A3C3D1E2) is shown as Equation (13).

Ẑ = X5 · β · Y5 + ϕ̂,

and T̂pr = f̃(ϕ̂,DT3) =

{1, T̂∈OR3, ϕ̂6DT3, DT3=0.04,

0, T̂∈Non-OR3, ϕ̂>DT3, DT3=0.03,

(13)

5 Second approach: Radial Basis Function
Neural Network (RBFNN)

The second approach consists of the classifier, curve fitting by RBFNN, and
feature selection by GA to find the optimising parameters of the classifier.
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This approach requires extensive computation when adjusting the weighting
values and bias during each iteration and achieving a global optimum by GA.
For this reason, we decided to build the classifier in the second approach
under the final parameter design of only Factors A and C (Case 2: A3C3),
because Factors D and E are the parameters of building the PR.

5.1 Classifier

The classifier is made by RBFNN, and the transform function is Gaussian func-
tion, which is called Radiated Basic Function (RBF) in Matlab Toolbox [23]
is expressed as

φ(n) = radbas(n) = exp(−n2),
where n = ||ω1 − Z|| · b1; b1 = −0.8326/SC,

(14)

where ω1 is the weighting value of the hidden layer; Z = N(SNR) is the
input data; b is the bias of the hidden layer; SC is spread constant and is
like the variance of Gaussian function. The value 0.8326 is defined as the net
input being √(− log(0.5) or 0.8326) when RBF=0.5. The setting of SC is
sensitive for determining if the network is overfitting or under-fitting, so it
will be optimised by GA in subsection 5.2.

Since RBF is a continuous function but the original target (T) is categorical,
it needs to convert the categorical variables to continuous variables by Omega
transform (f(T)) [35, 36, 38], which is

Tnn = f(T) = 10 · log10(
T

1 − T
)

{+∞, T=1, Target∈OR3,

−∞, T=0, Target∈Non-OR3.
(15)

Therefore, RBFNN can calculated from Equation (14) and Equation (15),
which is given as

T̂ =
∑h
ı=1ω2,ı · φı + b2,ı,

where ω2,ı =
φTı ·Tnn
φTı ·φı

; b2,ı =
(ω2,ı)

2·φTı ·φı
TTnn·Tnn

;
(16)
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where ω2,ı is the weighting value of the linear layer; b2,ı is the bias of the
linear layer; T̂ is the output from RBFNN; ı=1,2,. . . ,h; h is the number
index of the hidden layer.

Since the output layer of RBFNN is linear, it is given from the Orthogonal
Least Squares (OLS) learning algorithm [22]. To make the computation in
each iteration more efficient in OLS, setting a tolerance (“Goal” in Matlab
toolbox, refer to Equation (17)) is a strategy to balance the accuracy and the
complexity of the final network. The setting of Goal also should be optimised
by GA.

1 −

h∑
ı=1

b2,ı < Goal, (17)

After training from RBFNN, the predicting target (T̂) should be transferred
through the inverse omega transform (f−1(T̂)) and the final target (T̂nn),

T̂nn = f−1(T̂) =

{1, T̂≈+∞, Target∈OR3,

0, T̂≈−∞, Target∈Non-OR3.
(18)

5.2 Feature selection

The feature selection is finding the global optimum of “SC” and “Goal” in
RBFNN by GA. The algorithm of GA utilises Matlab toolbox. The Genetic
parameters are set as Population size = 100; Crossover rate = 0.8; and
Generations = 50. The objective function (Equation (19)), which is under the
range limitation of SD and Goal, is calculated by the square root of the mean
of each R2 and R2

pred, which is from Equation (C.4) and Equation (C.6) (refer
to Appendix C), through Leave-One-Out Cross Validation (LOOCV) [26, 39].

ν =

√∑n̂
p=1 R

2
(p)

n̂
·
∑n̂
p=1 R

2
Pred(p)

n̂
,

where n̂ = 101; 1 < SC < 1000; 0.01 < Goal < 0.1.
(19)
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6 Results and Discussion

From the final parameter design of the first approach, the results show that
Factor A at Level 3, the features extracted from HF, better expressed the char-
acteristics of acoustic signatures than those from occurrence frequency (OF).
Factor C at Level 3 means that SNR was more sensitive to the distribution
of frequency and pressure terms. In accordance with the final combination of
factors, the performance of the first approach and the second approach were
compared (refer to Figure 7 and Table 6).

Figure 7(A) shows the three-dimensional SNR distribution under optimal
conditions (A3C3). Figure 7(B) displays the normalised SNR of PR model
from Equation (13). Figure 7(C) displays the normalised SNR of RBFNN
model. Table 6 shows the results after evaluating the two approaches with
detection accuracy (ACC) and the confusion matrix of ROC (refer to Table
2) under training, validating and testing processes. The larger ACC (TP and
TN) is and the smaller FP and FN are, the better the performance is.

The first approach consisted of PR classifier and a reduced model (proposed
in this paper and referred to as PR model), which used the Taguchi method
and ANOVA. The training accuracy was 81.9% (664 samples), the validating
accuracy was 82.76% (58 samples) and the testing accuracy was higher than
RBFNN and up to 81.03% (58 samples), which was calculated using only 273
seconds for training and about 3.8 seconds for predicting.

The second approach used RBFNN, and it optimised the classifier parameters
by GA (Goal = 0.4891 and SC = 1). Figure 7 and Table 6 show that RBFNN
displays better curve-fitting than PR model with R test, R2 test, and ACC.
As the data samples in different voyages are not same (refer to Table 1), we
distributed the training and validating samples between the PR approach
and RBFNN based on the ratio of each voyage to avoid too much overfitting.
The training accuracy was 85.5% (200 samples) and the validating accuracy
was 70% (40 samples), where training and validating samples were lower than
PR classifier, but testing accuracy still could reach 62.48% (540 samples).
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Table 6: Evaluating two approaches (PR approach(A3C3D1E2) and RBFNN
approach (A3C3)) by detection accuracy (ACC, %) and the confusion matrix
under training, validating and testing process.

(A) PR (train) : ACC = 81.9 %
T=1 T=0

T̂=1 TP = 251 FP = 39
T̂=0 FN = 81 TN = 293
Total samples 332 332
Elapsed time 273 seconds

(B) RBFNN (train) : ACC = 85.5 %
T=1 T=0

T̂=1 TP = 82 FP = 11
T̂=0 FN = 18 TN = 89
Total samples 100 100
Elapsed time 16197 seconds

(C) PR (validate) : ACC = 82.76 %
T=1 T=0

T̂=1 TP = 23 FP = 4
T̂=0 FN = 6 TN = 25
Total samples 29 29
Elapsed time 3.5 seconds

(D) RBFNN (validate) : ACC = 70 %
T=1 T=0

T̂=1 TP = 14 FP = 6
T̂=0 FN = 6 TN = 14
Total samples 20 20
Elapsed time 0.1 seconds

(E) PR (test) : ACC = 81.03 %
T=1 T=0

T̂=1 TP = 22 FP = 3
T̂=0 FN = 8 TN = 25
Total samples 29 29
Elapsed time 3.8 seconds

(F) RBFNN (test) : ACC = 64.6 %
T=1 T=0

T̂=1 TP = 159 FP = 80
T̂=0 FN = 111 TN = 190
Total samples 270 270
Elapsed time 0.1 seconds

Although the predicting time was 30 times faster than the PR classifier, the
training time was 59 times higher for building the model.

Although the training performance of R-square testing and accuracy of
RBFNN model displayed better fitting than PR model, it included the noise
(the peak values in Figure 7 (A.1) and (C.1)) and led to worse performance
on the prediction of OR3. Since the Non-OR3 samples included the ambient
noise in Figure 7 (A.2) and the RBFNN model approached the noise in
Figure 7 (C.2) well, the performance of Non-OR3 RBFNN works better than
the performance of OR3 in Table 6 (B) and (F).
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Figure 7: (A) The SNR data; (B) the normalised SNR of PR approach
under the optimal condition (A3C3D1E2); (C) the normalised SNR of RBFNN
approach under the optimal condition (A3C3) of Model 1 (OR3) and Model 0
(Non-OR3).

Since the target of the identification system is specific for OR3 and the first
approach significantly reduces the computational time (when training the
classifier and feature selection) while enhancing the classification accuracy,
the overall performance of the automatic identification system includes the
prediction and the accuracy. Thus, the PR model proposed in this paper
has better performance than the RBFNN model. The results show that the
feature extraction of OT and HT and that the SNR of the FF and its PSD is
appropriate for our identification system.
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7 Conclusion

We developed Automatic Identification System for Vehicles using Acoustic
Signature (AIS4VAS), which is composed of feature extraction, classification
algorithms, and feature selection, to perform the identification of noises
that will identify a specific ship. This research utilises signal processing to
extract the essential features of the acoustic signature from a bottom mounted
hydrophone. We utilised factor analysis to describe variability and interaction
among observed acoustic signatures in feature selection.

The final combination of factors describe the SNR under interaction with
frequency and its PSD, which could increase the contribution of harmonic
signal characteristics. The classifier constructed by PR, which is made by
HF features from unmasking the frequency BW of OR3 shipping noises, is
superior to that of the RBFNN model. Last but not least, results suggest
that feature extraction works better for our targets and identification system.

Appendices

A Feature extraction

A.1 Derivatives of extracting the FF

Φ(t) is raw data from the hydrophone, after which STFT can get the acoustic
pressure value P[t, F], where t is 3-minute long data. Filtering the low
frequency and high frequency noise for each minute of data results in the
filtering pressure value P̃[t, F̃]. We extract and normalise the peak pressure
from filtering values P̃[t, F̃BWk

] under each BW to get Ns(P̃), where t is still
a 3-minute long data set, FBWk

is the frequency range under each BW, and k
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is the index number of BW from 1 to 7. The normalisation formula is used to
bring all values into the range [0,1] and is called unity-based normalisation,
which is expressed as

Ns(P̃) ≡ N(P̃s) := (P̃s − P̃min)/(P̃max − P̃min), (A.1)

where s is the index of P̃. Calculating the marginal probability density
function (MPDF) of N(P̃) to get P̆[t, F̆BWk

] is

P̆s[t, F̆BWk
] = MPDF(P̃s) := Ns(P̃)/

∑
t

Nt(P̃) , t is the index number of N.

(A.2)

We only extract the peak pressure value from 95% of total energy to be “the
pressure of fundamental frequency” P̂[t, F̂BWk

] (Equation A.3), where w is
the index number of selecting 95 % peaks under each BW. Calculating the
95% of total energy is a kind of second filter to process the next procedure.

P̂ = [P̆1 P̆2 ... P̆w]
′ := {P̆s|

w∑
s=1

P̆s[t, F̆BWk
] 6 0.95, P̆1 > P̆2 > ... > P̆w}.

(A.3)
FF = F̂ = [F̂1 F̂2 ... F̂w]

′ := {F̂w|F̂w ∈ F̂BWk
, k = 1, 2, ..., 7}. (A.4)

The FF (F̂) are defined as the frequencies under each BW (F̂BWk
), and they

are a subset of “the pressure of fundamental frequency (P̂ )”.

A.2 Examples of calculating OT, HT and their
correlation

Table A-1 is an example of calculating the OT and HT. There are 4 samples
and 6 different frequencies of Occurrence Frequency (OF). Here, Harmonic
Frequencies were 11 Hz, 22 Hz, 44 Hz, and 66 Hz. OTs at 11 Hz appear 4
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times, and, at 22Hz, they appear 3 times within these 4 samples, and so on.
Harmonic Times at 22 Hz occur 2 times, including 44 Hz and 66 Hz.

We randomly chose 32 from 332 (OR3 target) to be a training sample (Table 6
(A) ) and repeated the probability of selection until the total number of
samples reached 101 sets. We followed the above procedure to get OT and HT
from each set. Since HT is calculated from OT, we analyse the correlation of
OT and HT at different BWs first. From Figure A.1, we see that HT is highly
negatively correlated to the BW and OT is moderately negatively correlated
with BW4 (250-499 Hz band) and BW7 (1k-2k Hz band). Because of the low
frequency band of ambient noise interference, there is no correlation between
OT and HT and the frequency index and OT are below 250 Hz. This shows
that HT is highly correlated with OT only at and above the 250 Hz band.

Table A-1: Examples of calculating Occurrence Times and Harmonic Times.
Occurrence Freq. 11 Hz 15 Hz 22 Hz 37 Hz 44 Hz 66 Hz
Harmonic Freq. 11 Hz 22 Hz 44 Hz 66 Hz
Sample (1)

√ √ √ √ √

Sample (2)
√ √ √ √

Sample (3)
√ √ √ √ √

Sample (4)
√ √ √

Occurrence Times 4 3 2 4 2 2
Harmonic Times 4 1 3 1 1 1

Figure A.1: Correlation analysis of Occurrence Times and Harmonic Times.
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A.3 Example of extracting MF from experimental data

Figure A.2 shows how to extract MF by procedure of feature extraction
(Figure 4) and the PSD of OR3 from the aforementioned experiments (Table
1). The distribution of PSD from ocean cruising data is shown in Figure A.2(A-
C). The audio data from December 2016 recorded more wind-dependent
bubble and spray noise, which was caused by the worse sea state at that
time. Due to heavy traffic near Kaohsiung harbour, the data quality from the
Kaohsiung offshore test suffered interference from local commercial shipping
noise. From (B-C), there were insignificant harmonic peaks because the PSD
under 200 Hz fluctuated with the nearby shipping noise and the closest point
of approach (CPA) or the water depth was greater than in other experiments.
With larger distribution on PSD between 400 Hz to 900 Hz, its noise level
fluctuated with wind-dependent bubble and spray noise (Figure A.2 (B)). The
obvious harmonic peak in Figure A.2(D) was due to the small CPA during
the harbour testing, resulting in the recording sound pressure level being
louder and clearer. Figure A.2(E) was expressed that how to extract the
main frequency and three examples of the harmonic frequency of generators
(red and green) and main engine (blue). Many factors impacted extracting
main frequency (MF) from frequency band by signal processing and feature
extraction. Nevertheless, the procedure in this paper was not to extract
frequency features from a noise masking band. The procedure was to quantise
the frequency features distribution within each BW by the signal to noise
ratio (SNR).
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Figure A.2: The distribution of power spectral density of OR3 from (A-C)
ocean cruising data; (D) harbour testing data; (In (A-D), the solid line is
mean PSD value and the dotted lines are the higher bound and lower bound
of PSD); (E) extracting the main frequency and harmonic frequency from
whole experimental data.

B First approach

B.1 Derivatives of Polynomial Regression (PR)

The first step in curve fitting is building the polynomial of YZ plane under
seven BW. Y plane (y) is made by the training sets size, which is 101 in this
paper. For each BW, the regression output of 101 sets is

zp·1 = yp·rαr·1 + εp·1, p = 1, 2, ..., 101, r = 0, 1, 2, ...,OYZ. (B.1)

where z is the predicted output from the regression, r is the setting value of
power from YZ plane, p is the index number of training sets, α is the matrix
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of coefficient estimates for observation, and OYZ is one of the controllable
factors from Table 3. The residual of regression term ε is expressed as

ε = z− y · α. (B.2)

Calculating the square of residual (L) is expressed as

L = ε ′ε = (z− yα) ′(z− yα) = z ′z− 2α ′y ′z+ α ′y ′yα, (B.3)

Get the objective function from Equation (B.3)

Min L =

n∑
ii=1

ε2ii ⇒
∂L

∂α
= −2y′z+ 2y ′yα = 0, (B.4)

where ii is the index number of ε.

Solving the simultaneous equations, we obtain the coefficient matrix α

α = (y ′y)−1y ′z. (B.5)

Repeating the above procedures for each BW, we can get the whole regression
equation of seven BWs, which is expressed as Equation (B.6), where k is the
number of BWs

Ẑk = αk,r · Yr +ϕk, k = 1, 2, ..., 7.

Ẑk = [z1 z2 ... zk]
′, Yr = [y0 y1 ... yr] ′,

(B.6)

where αk,r = Λr ⇒


α1,0 α1,1 ... α1,r

α2,0 α2,1 ... α2,r
...

...
...

...
αk,0 αk,1 ... αk,r


k·r

=


Λ1

Λ2
...
Λr

 (B.7)

The second step is regression of the coefficient matrix of YZ plane (Equation
(B.7)), as well as X plane, which is also made from seven BWs

Λr·1 = X
d
r·dβd·1 + ε̂r·1, d = 0, 1, 2, ...,OXΛ. (B.8)
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where β is the matrix of coefficient estimates for a multilinear regression on X
plane, d is the setting value of power of building X plane and coefficient matrix
α, ε̂ is the residual term, and OXΛ is one of the controllable factors from Table
3. Combining Equation (B.6) and Equation (B.8), one can obtain Equation
(B.9). Equation (B.10) is the residual, which is the observed deducted from
the predicted value.

Ẑk = Λr · Yr +ϕk = (Xdr·dβd·1 + ε̂r·1) · Yr +ϕk = Xd ·β · Yr + ϕ̂k, (B.9)

ϕ̂k = ϕk + ε̂ · Yr = Zdata − Ẑk. (B.10)

B.2 Experimental results table and ANOVA of L27(313)
in feature selection

Figure B.1: Experimental results (S/NLTB) with five controllable factors in
Table 3 for L27(313) design.
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B.3 Detection accuracy of PR for Case 1 and Case 2

Table B-1: A confusion matrix of ROC in classifier of (A) Case 1: A1C3D2E3
(B) Case 2: A3C3D1E2. (The definition of A, B and C factors refer to Table
3).

(A) Case 1 : ACC= 68.79 %
T=1 T=0

T̂=1 TP = 224 FP = 99
T̂=0 FN = 108 TN = 233
Total samples 332 332

(B) Case 2 : ACC = 81.22 %
T=1 T=0

T̂=1 TP = 248 FP = 41
T̂=0 FN = 84 TN = 291
Total samples 332 332

C Equations for diagnostic ability of classifier

True positive rate (TPR = sensitivity, SEN) and false positive rate (FPR =
1-specificity) are calculated from the confusion matrix, which is seen in Table
2 and Table B-1. From TPR and FPR, we can calculate the KS (Kolmogorov-
Smirnov) test. The KS is made up of TPR and FPR. When KS is 1, the
model attains perfect classification, which means the condition of sensitivity
is 1 and specific = 1. The equations of TPR, FPR and KS are

TPR = TP/(TP+ FP) = Sensitivity, (C.1)

FPR = 1 − SPC = 1 − [TN/(TN+ FP)], (C.2)

KS = Max(TPR− FPR). (C.3)

The second method is evaluating the reduced model by calculating the coeffi-
cient of determination (R2) [15, 26]. The quantity R-square (R2) is defined
as Equation (C.4), where SSModel is the sum of square from the model and
SStotal is the total sum of square value.The value of R-square must be within
zero to one. The larger the value of R-square is, the more desirable it is. The
adjusted R-square (R2

Adj) from Equation (C.5) is a variation of the ordinary
R-square as increasing or decreasing the number of model terms, where dfE
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is degrees of freedom of the error term and dfTotal is the total number of
degrees of freedom. The larger the difference between R2 and R2

Adj is, the
larger the residual of this model is. The predicted R-square (R2

Pred) from
Equation (C.6), which is based on PRESS, shows how well the model predicts
the responses for new testing. PRESS stands for Prediction Error Sum of
Squares and is given by cross validation, where T is the original target and T̂
is the predicting target. The smaller PRESS is, the better the prediction is.

R2 =
SSModel

SSTotal
= 1 −

SSE

SSTotal
, (C.4)

R2
Adj = 1 −

SSE/dfE

SSTotal/dfTotal
, (C.5)

R2
Pred = 1 −

PRESS

SSTotal
, (C.6)

PRESS ≈
ξ∑
`=1

[
T` − T̂`

]2
. (C.7)

The third method is verification by correlation coefficient (R), which is a
statistical method to denominate the relationship between two variables and
is seen in Equation (C.8). SẐZdata is the covariance between model Ẑ and data
Zdata. SẐ is the standard deviation of model Ẑ, and SZdata is the standard
deviation of data Zdata.

R = SẐZdata
/(SẐ · SZdata). (C.8)
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