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Natural convection adjacent to a sidewall with
three fins in a differentially heated cavity
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Abstract

Natural convection in a differentially heated cavity with three fins
on a sidewall is numerically investigated. Due to the presence of the
fins, separation of the thermal flows around the fins occurs, and the
thermal flows separating from the fins oscillate. The oscillations of the
thermal flows around the fins improve the convection flows adjacent to
the finned sidewall, and the heat transfer through the finned sidewall
is significantly enhanced (by up to 33% at the early stage). This flow
configuration is of practical significance for many industrial systems.
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1 Introduction

Enhancement of the heat transfer through a differentially heated cavity is of
significance in many industrial applications, and one method of enhancement
is to place a fin on the sidewall [1]. Some of the fin parameters are critical for
heat transfer enhancement, such as the dimension of the fin [7]. In addition,
many researchers investigated natural convection in a cavity with multiple
fins on the active sidewall for at least two decades. Those studies indicate that
the flow patterns at the steady state are dependent on the Rayleigh number,
the inclination angle of the cavity, the aspect ratio, and the dimension and
separation interval of the fins. For a slender cavity with low Rayleigh numbers
(Ra < 105), a small cell may form in a ‘micro-cavity’, which consists of a
sidewall and two neighboring fins [2, 6]. Scozia and Frederick [6] indicated
that, as the number of fins increases, the flow undergoes a transition over
a number of distinct flow regimes, which have direct impact on the heat
transfer through the sidewall.

For the conduction flow regime (Ra < 103), if the fins are perfectly con-
ducting the heat transfer increases with the increasing number of fins and
the fin length due to the increasing heat transfer surface. For the convection
regime, the dependence of heat transfer on the number and length of fins
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is complicated. As indicated by Yucel and Turkoglu [9], with an increasing
number of fins the heat transfer first reaches a maximum and then approaches
a constant, which is not affected by the number of fins. Lakhal et al. [3] also
indicated that, if the cavity is inclined by 45◦, the heat transfer generally
decreases with increasing fin length.

Although studies on the effect of fins on laminar flows and heat transfer
have extensively been reported, the above studies are mainly concerned with
steady state flows in the range of low Rayleigh numbers (Ra < 107). For
higher Rayleigh numbers (Ra > 107) at which natural convection becomes
unsteady, the applicability of those results based on steady laminar flows
evidently need to be re-examined. In this article natural convection in a
differentially heated cavity with a Rayleigh number above 109 is numerically
simulated. We find that the transient thermal boundary layer flow arising
from sudden heating approaches a periodic flow. Since the convection flow
adjacent to the finned sidewall is enforced, the heat transfer through the
sidewall is significantly enhanced. Comparisons of the flow and heat transfer
between the configurations with three fins and without a fin are discussed.

2 Numerical procedures

A two dimensional domain, which is H = 0.24 m high by L = 1 m long, is
considered, based on the experimental model [8]. Three fins of the same cross
section of 20× 2 mm2 are placed on the hot sidewall with the same interval
of 0.058 m between two neighbouring fins and the same distance of 0.059 m
between the fin and horizontal wall, as seen in Figure 1. The working fluid
is water. The two dimensional Navier–Stokes and energy equations with the
Boussinesq approximation to be solved are

∂u

∂x
+
∂v

∂y
= 0 , (1)
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Figure 1: Schematic of the computational domain and boundary conditions.
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where T is the temperature, T0 is the initial mean temperature, p is the pres-
sure, u is the velocity in the x-direction, v is the velocity in the y-direction,
g is the acceleration due to gravity, ρ is the density, β is the coefficient of
thermal expansion, κ is the thermal diffusivity, and ν is the kinematic vis-
cosity. SI units are adopted for all quantities throughout the rest of the
paper.

The boundary conditions are also shown in Figure 1 along with the coor-
dinate system with the origin located at the center of the cavity. The top and
bottom walls as well as surfaces of the fins are adiabatic, and a temperature
difference is applied to the two sidewalls. Initially, the fluid in the cavity
is motionless and isothermal (T0 = 295.55 K). The temperature difference
between the two sidewalls is 16 K. The corresponding Rayleigh number and
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Prandtl number are 3.77× 109 and 6.64, respectively:

Ra =
gβ∆TH3

νκ
and Pr =

ν

κ
. (5)

In order to estimate the degree of the enhancement of the heat transfer
through the finned sidewall, we define a normalized difference of the heat
transfer rate through the finned sidewall as

qdiff =
qfins − qnofin

qnofin

, (6)

where qdiff is a normalized difference of the heat transfer rate through the
hot sidewall between the two cases with and without fins, qfins is the heat
transfer rate through the entire sidewall with three fins, and qnofin is the heat
transfer rate through the entire sidewall without fins. Furthermore, the local
heat transfer coefficient and heat flux along the wall are

h =
q′

Tw − T0

and q′ = k
∂T

∂n
, (7)

where Tw is the wall temperature, q′ is the local heat flux of the wall, h is
the local heat transfer coefficient, k is thermal conductivity, and n is the
direction normal to the wall surface.

The governing equations are solved using a finite volume simple algo-
rithm [5]. All second derivatives and linear first derivatives are approxi-
mated by a second order center differenced scheme. The advection terms
are discretized by a second order upwind scheme [7]. The time integration
is discretized by a second order backward difference scheme. The discretized
equations are iterated with under relaxation.

In order to accurately capture the features of the flows in the vicinity of
the fins and wall boundaries, a non-uniform grid system is constructed with
finer grids in the vicinity of the fins and wall boundaries. Similar to that used



2 Numerical procedures C811

Figure 2: Time series of the temperatures at the point (x = 0.498 m, y =
−0.03 m) calculated by different meshes at different times.

by Xu et al. [7], a 269 × 595 mesh is adopted. Furthermore, a finer mesh
(308 × 809) is also tested, and the results of the mesh dependence test are
shown in Figure 2, which plots the time series of the calculated temperatures
at a typical point within the thermal boundary layer for the two meshes (solid
and dashed lines). Clearly, the two meshes produce similar results in terms
of the amplitude of temperature waves in both the early and transitional
stages. However, details of temperature waves such as the phase and shape
of temperature waves are sensitive to the mesh. Since the focus of this article
is on the basic flow patterns and the transition process from sudden heating
to a quasi-steady stage, the mesh of 269× 595 is adopted in order to reduce
the computational cost.

A time step of 0.1 s is adopted based on the previous studies by Patterson
and Armfield [4] and Xu et al. [7]. Such a time step is sufficient to capture the
features of transient flows, and the stability of the scheme is also guaranteed
with the adoption of the non-uniform grids.
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Figure 3: Time series of the temperatures at different heights (x = 0.498 m).
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Figure 4: Spectra of the temperature time series at different points.

3 Time series of the thermal flows adjacent

to the finned sidewall

For the purpose of observing the overall transition of the thermal flows in
the vicinity of the finned sidewall from sudden heating to the quasi-steady
stage, Figure 3 shows the time series of the temperatures obtained at different
heights in the vertical thermal boundary layer. The temperature time series
in Figure 3(a) is taken at the downstream side of the lowest fin (x = 0.498 m,
y = −0.03 m), and that in Figure 3(b) at the downstream side of the middle
fin (x = 0.498 m, y = 0.03 m). Figure 3 shows that the lowest thin fin
induces stronger downstream perturbations than the fin at the higher position
by comparing the temperature waves in Figures 3(a) and (b) (note that
both figures have a temperature scale of 6 K). Eventually the thermal flows
adjacent to the finned sidewall approach a periodic state (hereinafter referred
to as quasi-steady state).

Figure 4 shows the corresponding spectra of the above temperature time
series in the quasi-steady stage. Figure 4(a) indicates that the temperature
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Figure 5: Time series of the temperatures at different heights (x = 0.498 m).

waves induced by the lowest thin fin have a clear dominant frequency of
f = 0.112 Hz with additional higher frequency modes. For the temperature
waves induced by the thin fin at the higher position (Figure 4b), the dominant
frequency is approximately at f = 0.11 Hz, similar to that induced by the fin
at the lower position, indicating that the perturbations from the upstream
fin are carried downstream to the current location. However, the additional
frequency modes at this location are evidently different from that at the lower
position.

In order to observe further spatial evolution of the temperature waves in
the thermal boundary layer, the time series of the temperatures obtained at
different heights in the quasi-steady state are plotted in Figure 5. Since the
temperature waves on the upstream side of the lowest fin are much weaker
than those at the downstream side of the lowest fin, the wave feature of the
temperature signal at the upstream side of the lowest fin cannot be shown
clearly when the temperatures obtained at all the locations are plotted on
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the same scale (the temperature at the lowest position is shown as a straight
line in Figure 5). Figure 5 also indicates that, apart from the upstream point
of the lowest fin, the amplitude of the temperature waves decreases slightly
as the monitoring position moves from upstream to downstream, which is
different from those results induced by a single fin at the mid height of the
sidewall [7].

4 Flows adjacent to the finned sidewall and

heat transfer

Figure 6(a) shows the flows in the vicinity of the hot wall in the quasi-
steady state in which separations of the flows at the leeward side of the
thin fins are clear, similar to that of the thermal flow around a single thin
fin [7]. Oscillations of the thermal flow separating from the fins trigger the
downstream instability of the thermal boundary layer flows, and result in the
increasing convection flow on the downstream side of the fin. The effect of
the increasing convection flow on the local heat transfer coefficient is plotted
in Figure 6(b). The local heat transfer coefficient at the downstream sides
of the fins is greater than that without the fins (the dashed line), implying
that the local heat transfer through the hot finned sidewall is enhanced at
this time.

For the purpose of quantitatively estimating the degree of the enhance-
ment of the heat transfer through the finned sidewall, Figure 7 plots the
normalized difference of the heat transfer rate through the hot wall against
time (in which the dashed lines are the scale grid lines), and indicates that
the heat transfer is enhanced by as much as 33% in the initial stage.
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Figure 6: Flow and heat transfer at t = 6000 s: (a) Isotherms (from 287.55
to 303.55 K with the interval of 0.4 K); (b) Heat transfer coefficient.
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Figure 7: qdiff versus time.
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5 Conclusions

Natural convection in a differentially heated cavity with three fins placed
on the hot wall has been numerically simulated. The results are compared
with the case without a fin. The thermal flows around the fins separate from
the fins and oscillate. The oscillations of the thermal flows around the fins
improve the convection flow on the downstream side of the fins, and the local
heat transfer on the downstream side of the fins is enhanced. As a result,
the total heat transfer through the finned sidewall is significantly enhanced,
as shown in Figure 7. Further investigations of the effect of the fin on the
flows and heat transfer, which consider different geometries and sizes of the
fin, are currently underway.
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