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The leading edge effect in a suddenly
differentially heated cavity
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Abstract

We perform a two dimensional numerical simulation of transient
natural convection in a suddenly differentially heated cavity in order
to observe the initial transient flows, particularly the leading edge
effect. The numerical results show that the pressure plays a key role
in the origination and propagation of the leading edge effect and the
deviation of the numerical solution from the theoretical solution is
due to the neglect of the convection terms in the theoretical solution
of the energy equation. Accordingly, the one dimensional conduction
solution does not estimate the transport coefficients.
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1 Introduction

For a suddenly heated vertical surface, which could be either a flat plate or
a sidewall of a differentially heated cavity, Goldstein and Briggs [4] indicated
that the early transient response is one dimensional and the heat transfer
from the surface to the fluid is dominated by conduction. Before the ver-
tical thermal boundary layer flow approaches a steady state, an overshoot
of its temperature followed by a few disturbances, is firstly achieved. The
overshoot and disturbances comprise the leading edge effect (lee), which
originates from the leading edge of the sidewall or semi-infinite flat plate,
and propagates downstream [3, 6]. The lee is one of the noticeable features
in the initial development of the thermal boundary layer flow for the case
of sudden heating. An important aspect of describing the lee propagation
is to predict its arrival time at any downstream location, and an analyti-
cal solution of the one dimensional thermal boundary layer equation [4] was
often employed to calculate the arrival time. However, Mahajan and Geb-
hart [5] demonstrated that the prediction based on the analytical solution [4]
significantly lagged behind the experimental measurements. Armfield and
Patterson [1] indicated that the speed of the unstable traveling waves in the
thermal boundary layer, based on a linear stability analysis, is consistent with
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that of the lee propagation, which is also supported by experiments [6]. This
implies that the waves in the lee region are a result of the thermal boundary
layer instability. Armfield and Patterson [2] based on numerical simulations
suggested that the lee propagation could be based on two speeds, a faster
speed and a slower speed. Evidently, this speculation of the lee propagation
based on two speeds needs further validation.

In this article, a two dimensional numerical simulation of natural con-
vection in a suddenly differentially heated cavity is performed and major
physical variables such as pressure, temperature and velocities in the vicinity
of the sidewall of the cavity are examined. The dynamic mechanisms of the
origination and propagation of the lee are discussed. We find that the lee is
indeed an interaction coupling temperature, pressure and velocities, and the
pressure perturbations plays a key role in the origination and propagation of
the lee.

2 Numerical procedures

The two dimensional Navier–Stokes and energy equations with the Boussi-
nesq approximation to be solved are
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where T is the temperature, T0 is the initial mean temperature, p is the pres-
sure, u is the velocity in the x-direction, v is the velocity in the y-direction,
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Figure 1: Schematic of the computational domain and boundary conditions.

g is the acceleration due to gravity, ρ is the density, β is the coefficient of ther-
mal expansion, κ is the thermal diffusivity, and ν is the kinematic viscosity.
SI units are adopted for all quantities throughout the article.

A two dimensional domain (see Figure 1), which is H = 0.24 m high
by L = 1 m long, is considered based on an experimental model [9]. The
working fluid is water, which is isothermal (T0 = 295.55 K) and motionless
at the initial time. All boundary conditions are shown in Figure 1 with a
temperature difference of 16 K between two sidewalls. The corresponding
Rayleigh and Prandtl numbers are 3.77× 109 and 6.64, respectively:

Ra =
gβ∆TH3

νκ
and Pr =

ν

κ
. (5)

The governing equations are solved using the simple scheme. The spa-
tial derivatives are discretized with a second-order upwind scheme for the
advection terms, and time marching is performed by a second order implicit
scheme.

Two non-uniform grids (199 × 563 and 395 × 1155) with an expansion
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Figure 2: Temperature series calculated by using different grids at point
(0.498 m, 0.09 m).

factor from the wall surface to the interior are tested. The unsteady results
calculated using the different grids are shown in Figure 2, which plots the
time series of the temperatures at the point (0.498 m, 0.09 m) within the
boundary layer in the early stage. Clearly, the two time series of the temper-
atures calculated using the two grids vary slightly during the period when
unstable waves are present (corresponding to the period with distinct peaks
and troughs on the plots). At other times, these two plots overlap with each
other. Therefore, to reduce computing time, the grid 199 × 563 is adopted
in our calculations.

A time step of 0.1 s is adopted based on previous numerical simulation [8]
in which it has been demonstrated that this time step is sufficient to capture
the features of the transient flows, and the stability of the scheme is also
guaranteed with the adoption of the non-uniform grids.
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3 Origin of the leading edge effect

In a differentially heated cavity, the leading edge of the thermal boundary
layer is the join of the isothermal vertical sidewall and the adiabatic horizon-
tal bottom wall at the upstream corner. In order to obtain some insights into
the dynamic mechanisms responsible for the generation and propagation of
the lee, the discussion here starts from the origin of the lee, that is, the up-
stream corner. Figure 3 shows the pressure, velocity and temperature fields
near the upstream corner of the thermal boundary layer in the initial stage.
Although the times are very small (1 s and 3 s), the flow near the corner is
two dimensional. This is a result of the mass transfer in the corner region;
that is, following the sudden heating, the heated fluid in the upstream corner
is convected upwards due to the buoyancy effect, and in the meantime the
fluid outside the upstream corner, which is colder than that in the upstream
corner, is entrained into the corner, as seen in Figure 3. Figure 3(a) indicates
that the pressure minimum firstly arises in the upstream corner in the initial
stage, resulting in a negative pressure gradient toward the corner. Figure 3(b)
shows that the low pressure zone near the corner extends outwards and the
entrainment into the corner becomes increasingly stronger (indicated by the
relative length of the velocity vectors). The temperature contours at differ-
ent times in Figures 3(a) and (b) indicate that the thickness of the vertical
thermal boundary layer grows with time. Since the temperature of the fluid
entrained into the upstream corner is lower than that of the heated fluid in
the upstream corner and the viscous effect of the velocity field due to the adi-
abatic bottom boundary is present, a temperature contour (T = 295.56 K),
convex to the hot sidewall, results as seen in Figure 3(b).

In summary, the sudden heating of the sidewall results in a temperature
variation (distribution) of the fluid in the vicinity of the sidewall by conduc-
tion in the initial stage, which in turn produces a buoyancy force driving the
heated fluid upwards adjacent to the sidewall. When the heated fluid near
the leading edge moves upwards, the mass balance (through the continuity
equation (1)) induces a pressure distribution (that is, a pressure minimum
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Figure 3: Isotherms (dashed line), isobars (solid line), and velocity vectors
near the bottom corner at two early times. (a) t = 1 s. (b) t = 3 s.
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arises near the leading edge) which drives the horizontal entrainment near
the leading edge (see Figures 3 and 4). As a consequence, the pressure gra-
dient, as the only horizontal force, plays a key role in the origination of the
lee.

4 Propagation of the leading edge effect

For the purpose of illustrating the propagation of the pressure perturbations,
Figure 4 shows the pressure contours and the corresponding streamlines at
different times. As the pressure minimum moves downstream, by comparing
stream function values at different times, Figure 4 shows that the convection
at the upstream side of the pressure minimum is apparently enforced. In
particular, the horizontal convection in which the pressure gradient is the
only driving force significantly increases with time. Figure 4(f) also shows
the vectors of the negative pressure gradient at t = 6.2 s. Clearly, the hor-
izontal entrainment is driven by the pressure gradient near the location of
the pressure minimum.

In order to observe further the temperature variation associated with the
propagation of the lee, Figure 5 plots time series of the temperatures at
different heights. Distinct properties of the lee propagation, such as the
overshoot of the temperatures and the increasing amplitude of the traveling
waves with height following the overshoot, are shown. The times when the
temperature achieves the first peak at different heights in Figure 5 correspond
to those in Figure 4 in which the pressure contours and stream functions are
shown. By comparing the location of the temperature peak (see the height of
each curve in Figure 5) with that of the pressure minimum (see the pressure
contour within the contour of −0.0035 Pa) at the same time, we find that
the former location is higher than the latter one; that is, the temperature
maximum first arises at certain point in the thermal boundary layer, and
then the pressure minimum arrives. Furthermore, the numerically calculated
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Figure 4: Isobars (solid lines) and streamlines (dashed lines) adjacent to
the hot sidewall (vectors in (f): negative pressure gradients).
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Figure 5: Time series of the temperatures at different heights (x = 0.498 m).

temperature apparently deviates from the theoretical solution [4], as seen in
Figure 5.

For the purpose of measuring the speed of the lee, Figure 6 plots the
locations of the pressure minimum, the temperature maximum and the devi-
ation of the numerical solution from the theoretical solution measured from
the bottom against the time squared. Clearly, there is a very good linear
correlation between the locations and the time squared for the three sets of
data in the initial stage; that is, the propagation speeds of the pressure mini-
mum, the temperature maximum and the deviation of the numerical solution
from the theoretical solution are a linear function of time, which is also co-
incidently consistent with the scaling prediction of the initial flow velocity
(that is, v ∼ t) by Patterson and Imberger [7].



4 Propagation of the leading edge effect C800

H
ei

g
h

t
(m

)

0 50 100 150 200 250

-0.1

-0.05

0

0.05

0.1

t
2
(s )

2

Deviation from
analytical solution

Temperature
maximum

Pressure
minimum

Figure 6: Locations of the pressure minimum, the temperature maximum
and the deviation of the numerical solution from the theoretical solution
measured from the bottom against t2.



5 Heat balance in the initial stage C801

−0.6 0 0.6
−0.12

−0.052

−0.03

0.06

0.085

Terms in the energy equation (K/s)

y kd 2T/dx 2 

(udT/dx  
+vdT/dy) 

(kd 2T/dx 2    
−udT/dx−vdTdy) 

(m
) 

o 

o 

o 

Deviation 

Temperature max. 

Pressure min.

Figure 7: Terms in the energy equation at x = 0.498 m at t = 10.6 s.

5 Heat balance in the initial stage

In order to obtain insights into the deviation of the numerical solution from
the theoretical solution [4], the components of the energy equation (4) are
discussed in this section. Both the numerical and theoretical solutions of
temperature are obtained by solving the energy equation.

Figure 7 shows the vertical profile of each term in the energy equa-
tion at t = 10.6 s. The diffusion term (k∂2T/∂x2) is approximately con-
stant far downstream of the pressure minimum and significantly increases
upstream of the pressure minimum point. Similarly, the convection terms
(u∂T/∂x + v∂T/∂y) are approximately zero downstream of the deviation
point (y = 0.06 m, see Figure 7). However, upstream of y = 0.06 m, the
convection terms increase as the distance from the deviation point increases.
As a consequence, the unsteady temperature term (k∂2T/∂x2 − u∂T/∂x −
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v∂T/∂y) also deviates away from the approximate coincidence with the diffu-
sion term. This observation indicates the reason why the numerical solution
apparently deviates from the theoretical solution (also see Figures 5 and 6);
that is, the deviation is a result of the neglect of the convection terms in the
theoretical solution of the energy equation [4].

As the convection term increases and eventually balances the diffusion
term at y = −0.03 m, the unsteady temperature term is equal to zero at this
point (Figure 7) and the temperature reaches the maximum (refer Figure 6).
The pressure minimum point is in the upstream of the temperature maximum
and does not coincide with the maximum of the convection terms as seen in
Figure 7. Upstream of the pressure minimum, perturbations of the lee are
clear. Armfield and Patterson [2] indicated that the propagation speed of
the lee perturbations is determined by the speed of traveling waves based
on the stability analysis.

6 Conclusions

As indicated in Figures 3 to 5, the lee is an interaction among the major flow
quantities including the temperature, pressure and velocities. In particular,
the pressure (that is, the pressure gradient) plays a key role in the origination
and propagation of the lee. A good linear correlation of the locations of
the pressure minimum, the temperature maximum and the deviation with
the time squared illustrates that the different propagation speeds of these
quantities describing the lee linearly increase with time in the initial stage
(Figure 6). Furthermore, the numerical solution significantly deviates from
the theoretical solution due to the neglect of the convection terms in the
theoretical solution.
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