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Stochastic linear programming and
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Abstract

A mathematical analysis is presented for decision support for man-
aging water resources in a water-limited environment. The water
sources include rainfall, either direct or that held in reservoirs, shal-
low aquifers, river water withdrawal entitlements, and recycled water.
Water from each source has its own characteristics of quality and
thus suitability for use, quantity, temporal availability, environmental
impact of use and cost to access. Water availability is modelled by a
multivariate probability distribution. Relative values for salinity levels
and nutrient or mineral loads are given and other water characteristics
are summarised by a price for water from each source. We formulate
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and solve a stochastic linear program to find the optimal blend of
the available sources while meeting quality and supply constraints.
We apply these techniques to a common water resource management
problem facing an Australian farmer, that of growing a summer crop
usually reliant on irrigation. We compare alternate cropping decisions
based on their risk of failing to meet supply or quality standards. Our
measure of risk is Conditional Value-at-Risk.
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1 Introduction

To illustrate the use of Conditional Value-at-Risk (CvaRr) as a decision sup-
port tool for water resource managers, we present an application focussing
on the irrigation requirements of a summer crop in a water limited environ-
ment. In this situation, water may be available from a number of sources
such as rainfall, shallow aquifer groundwater, an entitlement to withdraw
river water, and tailwater, that is, water collected from previous crop irriga-
tion operations and recycled. This is a study to explore what questions can
be asked using this approach and we present a simple model. The results are
more to support intuition than to make reliable decisions.

Yamout and El-Fadel [3] formulated a linear program for a domestic
water supply problem for Greater Beirut. Water supplies were determin-
istic and they included socio-environmental practices as constraints. Linear
and non-linear programming algorithms have been used in coal blending for
power generation, treating sources of coal as having known quality and quan-
tity characteristics [1, e.g.]. Here we allow water from some sources to be
stochastic in availability. We solve a linear program to minimise the cost
of providing water which must meet quantity and quality constraints. We
evaluate alternate decisions in terms of the linear program solutions and the
CvaR values calculated from a distribution for minimum cost built up from
sampling instances of the stochastic variable. cvar has been applied in crop
selection [4], where a maximum value of ¢varR was included as a constraint
in a linear program.

In deciding to grow a summer crop a farmer determines whether sufficient
water is available to bring the crop to harvest, and compares the cost of that
water and other input costs against the expected return. However, water
is a crucial input to producing a crop and in this stochastic linear program
formulation of the decision problem we focus on the frequency of seriously
adverse events. The information from our solutions could be used to guide
future practical farm works, and also the level of hedging (crop insurance or
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futures products) that might be applied to cover the investment in the crop.

2 Model definition

2.1 Definition of VaR and CVaR

Value-at-Risk (var) is a measure of risk developed in the finance industry
for evaluating the risk exposure of a portfolio of financial instruments such as
shares, bonds and derivatives. vaR is defined as the maximum loss expected
to be incurred over a given time horizon at a specified probability level.
Mathematically, let z € X C R"™ be a decision vector and y € Y C R™ be
a vector representing the values of a contingent variable influencing the loss.
Let z = f(x,y) be a function that describes the loss generated by x and y. At
probability level a € (0, 1), the var,, of the loss associated with a decision x
is defined as [2]

VaR,(x) = inf{z | G(z, z) > a}, (1)

where G(z,z) is the cumulative density function for loss associated with
decision x.

VaR gives the value of the specified quantile of the distribution but does
not give any information about the upper tail beyond that value. That is,
vaR describes the frequency of a sizable loss but not the likely severity of
such a loss. cvar does contain information about losses in the upper tail.
CVaR is the expected loss, given that a loss greater than or equal to the
threshold vaRr occurs. The cvar, of the loss associated with a decision z is
defined as [2]

CVaRe,(z) = E{2 | G(z,2) > a}, (2)

where E denotes the expectation operator.

In this article we generate a cost, rather than loss, distribution through
simulation of a mathematical model of the system. vaRr is then found as the
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FIGURE 1: An example of the cost distributions simulated in Section 3 with
vaR and CcvaR indicated.

ath proportional value of the ordered distribution, and cvaR as the mean
of the values equal to or beyond var. Figure 1 shows var and CvaRr values
for an empirical cost distribution generated by our model for Section 3. The
mean cost is $96,095 and although most of the simulated costs are less than
$200,000, there is a positive probability of experiencing costs of 3% times
the average. For this distribution var is $162,000 and cvaR approximately
$181,000. cvar will always be greater than or equal to vaR.

2.2 Stochastic linear programming

Linear programming involves problems of the form

mincTx,

subject to Ax < b,

I<x<u,
where c¢Tx is a cost function, 1is a lower bound and u an upper bound for x.
The cost function is minimised subject to constraints which may be equality
or inequality constraints. Stochastic linear programming allows for some
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elements of the constraint equations to be stochastic. In this application
some elements of b are stochastic.

One approach to solving stochastic linear programs is to take particu-
lar values for the stochastic variables and solve the resulting deterministic
problem. Values typically chosen are the expected value of the variable, its
expected value plus and minus one or two standard deviations, or simply
a spread of possible values of the variable. Another approach is to sam-
ple values from the distributions of the random variables and again solve a
deterministic program. This method is particularly suited where there are
correlations between the stochastic variables. Our approach, this latter one,
involved specifying a multivariate normal distribution for the availability of
rainfall and groundwater, allowing us to incorporate correlation between the
random variables. Methods for generating samples for the multivariate nor-
mal are readily available but other distributions could be used. A copula or
the empirical Gibbs sampler could also be used to generate multivariate data
from arbitrary distributions. After sampling values from the input distribu-
tions, we use linear programming to find the optimal blend of water from the
four sources to obtain the lowest cost for producing the crop. The program
is run multiple times to build up an empirical distribution for the minimum
cost and calculate cvar values for the distribution.

Weset z;, 5 =1,...,J, torepresent the amount of water taken from each
source j. The cost of the water is ¢, and the amount of water available from
each source in a given summer is a;. Each source has a particular salinity
concentration, s;, and mineral or nutrient load, m;, and we set maximum
levels for these in the blended water of S and M respectively. We consider
an individual crop with a water requirement for full potential productivity
across a crop area of H hectare of X Ml. Expressed as a linear program, the
water blending problem is

min E le’j R
J

such that r; < aj,
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Zijj/z.r] <S5,
Zm]x]/Zx] <M,
ij ZXv

j
;>0 forj=1,...,n

2.3 Water characteristics

We characterize the various water supplies as shown in Table 1. The salinity
values are typical values encountered in inland cropping areas of Australia
and here are fixed as a summer average, although they could also be made
stochastic. For example, bore and river water may increase non-linearly
in salinity throughout a summer. The mineral or nutrient loads are typical
relative values for each source, and could represent sodicity levels in soil water
or nitrate levels in recycled water. We use a bivariate normal distribution
to represent the amounts of rainfall and groundwater available and model
them as being correlated with a coefficient of 0.7. Cost per Ml of water is
intended to represent the relative cost of accessing water from the respective
sources. It then would include pumping, storage and application costs, and
assumes the same application method is used for each crop, as well as costs
to represent the environmental cost of using water from a given source. We
are not certain of the accuracy of some of our parameters so have not carried
out sensitivity tests on them.
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TABLE 1: Relative values for water characteristics.

Source  Salinity Mineral load  Availability =~ Cost

rainfall 0.035 0.01 stochastic 1

bore 3.2 1.0 stochastic 500
river 0.6 0.1 deterministic 500
recycled 1.4 2.0 deterministic 50

3 Simulation results

Throughout this application we set a to be 0.90 and the time horizon to
be the life of the crop. The decision variable is a vector of the alternate
actions that could be taken: for example, grow a relatively thirsty crop with
higher returns, like cotton; or grow a relatively hardy crop with lower returns,
like wheat; or not grow any crop. For each action there is a different cost
distribution, and a cvar value calculated for each one. To minimise exposure
to risk, managers should choose the action that has the lowest cvar value.

3.1 Feasibility of supply

To the question of whether or not to grow a crop, the results (Figure 2) show
there is a 99% chance of successfully supplying at least 300 Ml of water under
the model conditions. Alternately, the result says that supply does not meet
a demand of 300 Ml on 1% of occasions. This increases to a 9% failure rate
for a crop requiring 500 Ml of water to reach harvest at full potential.
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FIGURE 2: Percentage of simulations meeting various crop water require-
ments.

3.2 Water requirement of crop

Given that it is decided to grow a crop, should it be a relatively high water
demanding crop? or a relatively low water demanding one? Expressed an-
other way the problem is: given that we are able to grow a range of crops
with specific water requirements for full growth potential, what area of each
crop should be grown? As Figure 3 shows, the cost distribution of producing
the thirsty crop has high variability and a bias toward higher values, while
the bulk of the simulated costs for a hardy crop are low and the distribution
is exponential in nature. The CVaRggg value for the more thirsty crop is
higher ($239,459 as against $79,377) as intuition would suggest. In effect,
the cvar values for both crops and particularly the thirsty crop are higher
than stated as we have excluded the infeasible solutions from their calcula-
tion. Costs cannot be found for the infeasible solutions; however, they would
be at least as great as the highest costs for feasible solutions. They could be
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FIGURE 3: Cost distributions for (a) a relatively high water demanding crop
and (b) a relatively low water demanding crop. Neither distribution includes
costs for infeasible solutions which occurred at a rate of 9% (a) and 0.2% (b).

much higher in reality if, for example, extra water was purchased to supple-
ment existing supplies. This is one of the advantages of using Cvar as a risk
measure over VaR. CVaR does take into account the extreme values in the
tail of the cost distribution.

3.3 CVaR and expected return

We illustrate the trade-off between cvar and expected return by considering
gross income from growing a single crop on the H hectare of, say, $2.0 million
for cotton and $1.2 million for wheat. Each estimated income is multiplied by
the probability of achieving full potential yield at harvest, from Section 3.1
above. We estimate total costs at $476,935 and $87,040 for cotton and wheat
respectively. Expected return, found from expected income minus costs, is
$1,343,065 for cotton and $1,110,560 for wheat. The net returns should
be adjusted by the relative risks involved in irrigating the crop, that is, we
subtract the cvar values found in Section 3.2 and obtain values of $1,103,606
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FIGURE 4: Cost distributions for (a) river water valued at a nominal rate
and (b) river water valued at two times the nominal rate.

and $1,031,183, for a financial advantage of cotton over wheat of $72,423.

3.4 Value of entitlement

River water entitlements may become more valuable if water can be sold to
other users. For this analysis, we double the cost of river water to represent
the opportunity cost of not selling the water. Growing a crop that requires
500 M1 of water (Figure 4), the two cost distributions have a similar shape
but are shifted along the horizontal axis. There is about a 75% increase in
the cvar value for the higher valued water.

3.5 Model extension

The model described here can be easily extended to consider growing of a
range of crops in the one season. The farmer would grow k crops, k =
1,..., K, with area h; under each crop. The decision variable is the relative
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proportion of the total cropping area to allocate between crops that require
differing amounts of water. Then our linear program has added constraints
hry > 0and ), hy < H for k=1,..., K. The constraint that supply from
all sources, ; T, at least equals demand, X, is required for a single crop
and for a mixture of crops. It is possible to implement constraints repre-
senting individual salinity (or mineral load) tolerances for different crops as
D2k SiTik/ D2 o Uik < Sk for k=1,..., K. This multiple-crop problem
is not solved here but Liu et al. [4] give a related example.

4 Conclusion

Management of water, on farm and off, is becoming more critical due to the
increasing demand, increasing value and, in some areas, decreasing availabil-
ity of the resource. We present a mathematical analysis for a typical farm
water blending problem where water from a variety of sources must meet
quantity and quality specifications for crop production. A stochastic linear
optimisation model represents the variability in water availability and crop
requirements. Monte Carlo simulation is used to test a range of actions rele-
vant to a farming operation and identify the preferred options. We make use
of a conservative risk measure, cvaR, which reveals the exposure to risk of
possible rare but devastating events. Our model quantifies the rate at which
supply fails to meet demand; we generate cost distributions and calculate
their cvaRr values. While the application of our model in this article is gen-
eral, using values encountered in the Narrabri region, its parameters could
be specified to match conditions applying to any particular farm property.
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