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A numerical approach to modelling avascular
tumour evolution with white noise
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Abstract

A model for avascular tumour growth with white noise is presented.
The model is a set of partial differential equations describing the
spatio-temporal evolutions of cell concentrations based on reaction-
diffusion dynamics and the law of mass conservation. Perturbations
in the form of white noise are introduced to model the effects of ran-
dom processes on distinct time scales. Numerical simulations in one
and two space dimensions are presented. Numerical results indicate
that the proposed model is a reasonable approach that may be used
to examine the effects of nutrient supply in tumour growth dynamics.
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1 Introduction

This article focusses on the growth dynamics of the avascular tumour. After
the early stages of growth, a multicell spheroid typically consists of an inner
zone of necrotic cells and an outer zone of living cells. The outer zone can be
further divided into a layer of quiescent cells and a layer of proliferating cells.
Quiescent cells are alive, but do not proliferate due to nutrient deprivation.

Figure 1 illustrates the development of a mass of tumour cells to the
typical three layer structure of a multicell spheroid consisting of a thin outer
shell of proliferating cells, an inner region where cells are dormant but viable,
and a central region of necrotic material.

Modelling of avascular tumours are often seen as a first step towards de-
veloping more models for later stages of tumour growth. Burton [4], Adam [2]
and Ward [13] overview the different types of mathematical models that have
been developed over the years. More recent studies involving stochastic mod-
els include those developed by Albano and Giorno [3], as well as Lo [9].

In this article, white noise is introduced into a reaction-diffusion model
for avascular tumour growth. A numerical approach then solves the set of
governing model equations. A simulation of tumour growth in two dimensions
is also presented to better visualize the growth process.
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Figure 1: Schematic illustration showing the growth of a tumour and the
formation of the proliferating and quiescent layers, and the necrotic core

2 Tumour growth model with white noise

The tumour model presented here is based on the compartment model shown
in Figure 2. Originally proposed by Sheratt and Chaplain [11], the in vivo
tumour is modelled as a continuum of proliferating, quiescent and necrotic
cells, whose densities are denoted by p(x, t), q(x, t) and n(x, t) respectively,
where t and x are time and the one dimensional space coordinate respectively.

The mitosis rate g(c) of the proliferating cells is assumed to be propor-
tional to the concentration of nutrients and limited by the crowding of the
total cell population. Nutrients are assumed to pass through the surface of
the tumour and diffuse into the interior through the intracellular space fast
enough for the local nutrient concentration c(x, t) to be quasi-steady. In the
direction of the core of the tumour, some proliferating cells become quiescent
at rate f(c), and some quiescent cells undergo necrosis at rate h(c).

As described by Tan and Ang [12], assuming a one dimensional model,
the set of equations governing the evolution of p(x, t), q(x, t) and n(x, t),
and the equation for c(x, t) are

∂p

∂t
=

∂

∂x

[
p

p+ q

∂(p+ q)

∂x

]
+ g(c)p(1− p− q− n) − f(c)p , (1)
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Figure 2: A compartment-model for tumour growth: proliferating cells
may multiply through mitosis, or become quiescent cells, which in turn may
undergo necrosis

∂q

∂t
=

∂

∂x

[
q

p+ q

∂(p+ q)

∂x

]
+ f(c)p− h(c)q , (2)

∂n

∂t
= h(c)q , (3)

c =
c0γ

γ+ p
[1− α(p+ q+ n)] . (4)

Equation (4) represents the access of nutrient from underlying tissue. We
assume that nutrient can only reach the viable tumour cells at the centre by
diffusing through the whole tumour structure. By assuming that the effec-
tiveness of this source term decreases with overall cell density, the parameter
α ∈ (0, 1] represents a constant of proportionality and c0 is the nutrient
concentration in the absence of a tumour cell population. The parameter γ
represents the ratio of the rates of nutrient supply to nutrient depletion as
proposed in the original model developed by Sheratt and Chaplain [11].

The model equations have been rescaled in space by assuming that a non-
dimensionalised cell density of one corresponds to a completely close packed
cell population. A suitable time rescaling is achieved by fixing g(0) = 1 . In
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subsequent numerical computations, at t = 0 and x = 0 the total tumour cell
density p+ q+n is set to one for convenience. The functions f(c) and h(c)

are assumed to be decreasing with c. A Gompertz growth rate is used to
represent the mitosis term in the formulation of g(c).

In Equations (1) and (2), the movement terms of the proliferating and
quiescent cells are represented respectively by

∂

∂x

[
p

p+ q

∂(p+ q)

∂x

]
and

∂

∂x

[
q

p+ q

∂(p+ q)

∂x

]
.

These terms model the effects of contact inhibition of cell migration [1] by
fractionating the overall cell flux evenly between the proliferating and quies-
cent cell densities.

Given the random effects due to the disparate cell clones, cell stress
and inhibiting factors considered in this model, it is appropriate to inject
a stochastic component to the model. One approach is to introduce white
noise to the Equation (3), the necrosis equation. The result is the following
equation in differential form,

∂n = h(c)q∂t+ qτdW(t) , (5)

where W(t) is the standard Wiener process and τ is a scaling parameter.

Equations (1), (2), (4) and (5), together with functions f(c), g(c) and h(c),
form a set of equations that model the evolution of cells with white noise per-
turbations in an avascular tumour.

3 Numerical solution

The system of equations (1), (2), (4) and (5) are discretized using a forward
difference approximation for time derivatives and central difference approxi-
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mations for space derivatives. The resulting set is

p
j+1
i = p

j
i + ∆t

[
u
j
i + g(c

j
i)p

j
i

(
1− pji − q

j
i − n

j
i

)
− f(cji)p

j
i

]
, (6)

q
j+1
i = q

j
i + ∆t

[
v
j
i + f(c

j
i)p

j
i − h(cji)q

j
i

]
, (7)

n
j+1
i = n

j
i + ∆t

[
h
(
c
j
i

)
q
j
i

]
+ τqji

(
W
j+1
i −Wj

i

)
, (8)

c
j
i =

γ

γ+ pji

[
1− α

(
p
j
i + q

j
i + n

j
i

)]
, (9)

where
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[
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j
i(r
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2
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/
[
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,
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i(r

j
i+1 − rji−1) + 4qjir

j
i(r
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2
]
/
[
4(∆x)2(rji)
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,

r
j
i = p

j
i + q

j
i ,

and ∆t and ∆x refer to the time steps and space intervals respectively for
the finite difference scheme. In the above equations, the superscript and
subscript represent the time level and space position respectively. In other
words, uji denotes u(xi, tj) = u(i∆x, j∆t). Tan and Ang [12] describe the
implementation more completely.

The Euler–Maruyama (em) method for solving stochastic differential equa-
tions numerically as suggested by Higham [8] is used here. A discretized
Brownian path over [0, T ] with a prescribed incremental value of δt is first
computed. Equation (8) is then solved by applying the em method, with a
stepsize of ∆T = Rδt , for some R ∈ Z+. In other words, we always choose
the stepsize for the numerical method, ∆T , to be an integer multiple R ≥ 1 of
the increment δt for the Brownian path. This ensures that the set of points
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Table 1: Functional forms and parameter values used in present model.
Functions Possible parameter values

f(c) = 1
2
(1− tanh(4c− 2)) γ = 10 , c0 = 1

g(c) = βeβc β = 0.1 to 1.0
h(c) = 1

2
f(c) α = 0.2 to 0.9

on which the discretized Brownian path is based contains the points of the
em computation.

On a general step, the em method requires the increment

W
j+1
i −Wj

i = W ((j+ 1)Rδt) −W (jRδt) =

(j+1)R∑
k=jR+1

dWk , (10)

with W(0) = 0 .

For boundary conditions, we set ∂p/∂x = 0 and ∂q/∂x = 0 at x = 0 and
as x → ∞ . We assume that at t = 0 there are no quiescent and necrotic
cells. Thus, we set q(x, 0) = n(x, 0) = 0 . At the beginning of any tumour
growth, there would be a high concentration of proliferating cells near the
point of genesis. The density of proliferating cells decreases with distance
from the point of genesis. Thus, it is assumed that p(x, 0) takes the form of
a decreasing exponential function.

For this discussion, f(c) and h(c) have been intentionally chosen to coin-
cide with those used by Sheratt and Chaplain [11] and Tan and Ang [12] for
comparison purpose, while g(c) is given a Gompertz growth formulation as
discussed earlier. Similarly, values for various parameters in the model are
chosen to be those used by these authors. These are shown in Table 1.

In the present study, we let p(x, 0) = 0.01 exp(−0.1x), and set δt = 0.05

and R = 2 . In solving the finite difference equations, we let ∆t = 0.004 and
∆x = 1 . For the current discussion, we set the duration of the simulation



4 Results and discussion C576

to be T = 14 (in arbitrary time units). As for the one dimensional space,
theoretically the domain is [0,∞]. However, in practice the numerical com-
putations may terminate when x is sufficiently large. Numerical experiments
indicate that x = 210 is deemed far enough if ∆x = 1 .

The Box–Muller random number generator is used to generate a set of
random numbers from a Normal distribution with mean zero and variance
one. The code was written in Visual Basic for Applications (vba) and com-
piled and run on a Pentium 4 system. Computation was stable for the chosen
set of parameters and convergence was rapid.

4 Results and discussion

The model is solved for the set of parameters, functions, boundary and initial
values mentioned above. Values of α ranging from 0.2 to 0.9 were used in
the simulation runs to investigate the effects of variable nutrient supply on
tumour growth dynamics. Results for representative cases α = 0.4 and
α = 0.8 , with β = 0.5 are presented in Figures 3 and 4.

The distributions of the tumour cell densities are found to be significantly
different from the models originally proposed by Sheratt and Chaplain and
later modified by Tan and Ang. In these earlier models, predicted cell dis-
tributions are either unrealistically smooth and symmetrical, or contain too
many jumps and apparent discontinuities. In contrast, the current model
shows a smooth but asymmetric spatial distribution of tumour cells.

From the figures, we observe that from t = 2 to t = 8 , the initial necrotic
cell density is distributed inwards of the tumour core. As time passes, the
necrotic cells continue to internalize with some necrotic cells dispersing to-
wards the outer edge of the tumour due to limited nutrient access.

As the necrotic cell density builds up, no tumour regression is detected;
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Figure 3: Evolution of proliferat-
ing, quiescent and necrotic cells at
t = 0, 2, . . . , 14 , for α = 0.4 .
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Figure 4: Evolution of proliferat-
ing, quiescent and necrotic cells at
t = 0, 2, . . . , 14 , for α = 0.8 .
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proliferating and quiescent cells are still propagating. These results compare
well with those obtained by Nirmala et al. [10], whose experimental studies
reported no limiting spheroid volume. Instead, growth of the total volume
of the spheroid over time was observed.

Tumour cell distributions also vary with nutrient concentration α. At a
lower α value of 0.4, and hence increased access of nutrients, live tumour
cell distribution is built to a higher level more quickly over a longer span of
space (Figure 3). The layer of live tumour cells thickens and the necrotic
core diminishes in size. These results are consistent with the argument that
tumour growth is influenced not only by the availability of nutrients, but also
by the stochastically perturbed tumour environment.

With a lower value of α, part of the proliferating cell density at t = 14

is being distributed in the necrotic core. As compared to the random effects
considered in the cell proliferation rate and the nutrient level in the model
proposed by Tan and Ang [12], the stochastic perturbation in the present
model assumes the form of a white noise process incorporated in the necrotic
cell growth dynamics. The observed response of the actively proliferating
cells against the necrotic core pressure suggests that tumour growth dynamics
could likely be impacted by the stochastic perturbation.

By assuming radial symmetry, we may suppose that the cells move radi-
ally so that there is only one nonzero velocity component, which depends only
on the distance from the spheroid centre, r, and time. Using this assumption
and results from the model, it is possible to create a simulation of tumour
growth in two dimensions, to provide a more suitable form of visualisation.
In Figure 5, a series of snapshots of tumour growth (with α = 0.8) generated
in this manner that corresponds to its one dimensional plot is presented.

At t = 2 the modelled tumour has a higher concentration of proliferating
than quiescent and necrotic cells. At t = 6 there are not only cells moving
towards the periphery but a significant number of quiescent and proliferating
tumour cells begin to move towards the core area. This simulated internal-
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Figure 5: Spatial-temporal evolution of avascular tumour cells with white
noise. Graphs and snapshots of growing tumour at t = 2, 6, 10 and 14 for
α = 0.8 show formation of proliferating, quiescent and necrotic cells.
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ization of tumour cells is also observed in the experimental work by Dorie
et al. [5].

From t = 4 to t = 8 the tumour is observed to be growing very fast in
the initial nutrient rich condition. As the tumour grows in size, the avail-
ability of nutrients decreases towards the centre, with growth retardation
observed from t = 10 to t = 12 . This observed growth rate is consistent
with experimental works on diffusion-limited tumour growth [7].

At t = 14 the three layer structure of multicellular spheroid experimen-
tally observed by Folkman and Hochberg [6] and represented in Figure 1
is formed with a distinct necrotic core. The figure shows that the present
model has produced fairly acceptable results which are in good agreement
with experimental works.

5 Conclusion

This article discussed a tumour growth model that includes white noise. Nu-
merical results and qualitative comparisons with published works indicate
that the inclusion of a stochastic component results in a more realistic sim-
ulation of avascular tumour evolution.

However, the tumour dynamics responsible for the stochastic perturba-
tion has not been determined experimentally. The results presented only
speculate about the true nature of the tumour cell distribution based on the
assumptions of the model. Further experimental input is required to deter-
mine the actual phenomena contributing to stochastic processes in tumour
growth. Nonetheless, the model described in this article provides a founda-
tion needed for future studies in tumour growth models with white noise.



References C581

References

[1] Abercrombie, M., Contact inhibition in tissue culture, In vitro., 6,
1970, 128–140. doi:10.1007/BF02616114 C573

[2] Adam, J. A., A simplified mathematical model of tumour growth,
Mathematical Biosciences, 81, 1986, 224–229.
doi:10.1016/0025-5564(86)90119-7 C570

[3] Albano, G. and Giorno, V., A stochastic model in tumor growth,
Journal of Theoretical Biology, 242, 2006, 329–336.
doi:10.1016/j.jtbi.2006.03.001 C570

[4] Burton, A. C., Rate of growth of solid tumours as a problem of
diffusion, Growth, 30, 1966, 157–176. C570

[5] Dorie, M., Kallman, R. and Coyne, M., Effect of cytochalasin b,
nocodazole and irradiation on migration and internalization of cells
and microspheres in tumor cell spheroids, Experimental Cell Research,
166, 1986, 370–378. doi:10.1016/0014-4827(86)90483-0 C580

[6] Folkman, J., and Hochberg, M., Self-regulation of growth in three
dimensions, Journal of Experimental Medicine, 138, 1973, 745-753.
C580

[7] Folkman, J., Tumour Angiogenesis, Advances in Cancer Research, 43,
1985, 175–203. C580

[8] Higham, D. J., An algorithmic introduction to numerical simulation of
stochastic differential equations, SIAM Review, 43, 2001, 525–546.
doi:10.1137/S0036144500378302 C574

[9] Lo, C. F., Stochastic Gompertz model of tumour cell growth, Journal
of Theoretical Biology, 248, 2007, 317–321.
doi:10.1016/j.jtbi.2007.04.024 C570

http://dx.doi.org/10.1007/BF02616114
http://dx.doi.org/10.1016/0025-5564(86)90119-7
http://dx.doi.org/10.1016/j.jtbi.2006.03.001
http://dx.doi.org/10.1016/0014-4827(86)90483-0
http://dx.doi.org/10.1137/S0036144500378302
http://dx.doi.org/10.1016/j.jtbi.2007.04.024


References C582

[10] Nirmala, C., Rao, J. S., Ruifrok, A. C., Langford, L. A. and
Obeyesekere, M., Growth characteristics of glioblastoma spheroids,
International Journal of Oncology, 19, 2001, 1109–1115. C578

[11] Sheratt, J. A. and Chaplain, M. A. J., A new mathematical model for
avascular tumour growth, Journal of Mathematical Biology, 43, 2001,
291–312. doi:10.1007/s002850100088 C571, C572, C575

[12] Tan, L. S. and Ang, K. C., A numerical simulation of avascular tumour
growth, ANZIAM Journal, 46(E), 2005, C902–C917.
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/

view/997 C571, C574, C575, C578

[13] Ward, J. P., and King, J. R., Mathematical modelling of avascular
tumour-growth, IMA Journal of Mathematics Applied in Medicine and
Biology, 14, 1997, 39–69. doi:10.1093/imammb/14.1.39 C570

Author addresses

1. Keng-Cheng Ang, Mathematics and Mathematics Education,
Nanyang Technological University, 1 Nanyang Walk, Singapore.
mailto:kengcheng.ang@nie.edu.sg

2. Liang-Soon Tan, Ministry of Education, Singapore.
mailto:tan_liang_soon@moe.gov.sg

http://dx.doi.org/10.1007/s002850100088
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/997
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/997
http://dx.doi.org/10.1093/imammb/14.1.39
mailto:kengcheng.ang@nie.edu.sg
mailto:tan_liang_soon@moe.gov.sg

	Introduction
	Tumour growth model with white noise
	Numerical solution
	Results and discussion
	Conclusion
	References

