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On estimation algorithms for ordinary
differential equations
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Abstract

This article addresses the problem of estimating the parameters
of a system of ordinary differential equations given data derived from
noisy observations on the state variables. This problem is important
in a range of applications in areas such as adaptive, real time control.
There are two main classes of method for attacking this problem, and
their equivalence and effectiveness (consistency) are discussed. Recent
rate of convergence results for the major implementation techniques
are summarized, and some matters requiring further consideration
indicated.
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1 Introduction

The problem under consideration is that of estimating the vector of param-
eters β ∈ Rp in the system of ordinary differential equations

dx

dt
= f (t,x,β) , (1)

where x, f ∈ Rm, given observed data:

yi = Ox∗ (ti,β
∗) + εi , i = 1, 2, . . . , n , (2)

O ∈ Rm → Rk, yi ∈ Rk, k ≤ m, ti ∈ [0, 1] ,

εi ∈ Rm, εi ∼ N
(
0, σ2Ik

)
and independent. (3)

The assumption of normal errors is standard enough, but it does have some
implications (Section 5). It means that the maximum likelihood estimators
of the ‘true’ parameter vector β∗ and corresponding state variable values
x∗ (t,β∗) are found by solving the nonlinear least squares problem

β̂n = arg min
β∈Rp

n∑
i=1

‖yi −Oxi‖2 (4)
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where the allowed values of xi = x (ti,β) are constrained to satisfy the
differential equation. Typically the approximation is made that a discretized
version of the differential equation is used to constrain trial values in (4).
Here this is the trapezoidal rule

c (xc)i = xi+1 − xi −
∆t

2
[f (ti+1,xi+1,β) + f (ti,xi,β)] = 0 , (5)

where (xc)i = xi , i = 1, 2, . . . , n , xc ∈ Rn×m. It produces solution values
that are usually sufficiently accurate when working with noise contaminated
signals (see Section 4). It has the important sparsity structure

c (xc)i = cii (xi) + ci(i+1) (xi+1) , i = 1, 2, . . . , n− 1 . (6)

This structure is not possessed by higher order discretizations.

Methods for solving the optimization problem (4) fall into two general
classes called here embedding [3], and simultaneous [1, 6]. The embedding
method provides a formal link between the problem and the closely related
regression problem, but this connection involves some arbitrary choices that
affects performance. However, it does allow the method to connect with an
important body of theory that enables validation of the procedure. The si-
multaneous class avoids this specification uncertainty and should be capable
of being implemented more efficiently in many cases. However, justification
is technically a more difficult problem. These points are illustrated by con-
sidering in Section 3 the problem of the equivalence of the methods and in
Section 4 the question of asymptotic consistency—do the methods produce
the true parameter vector in the limit as the number of observations grows
without bound? Completely satisfactory answers to all questions of interest
are not yet available .
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2 Methods

2.1 Estimation via embedding

The embedding approach leads to an unconstrained optimization problem
that typically is solved by such standard methods as the Gauss–Newton al-
gorithm. It removes the differential equation constraint on the state variable
x (t,β) by embedding the differential equation into a parametrised family of
boundary value problems that is solved explicitly at each step in order to
generate trial solution values. This requires boundary conditions

B1x (0) + B2x (1) = b ,

where B1, B2 ∈ Rm → Rm are assumed known while b is a vector of addi-
tional parameters that must be determined as part of the estimation process.
The key requirement is that the resulting system has a numerically well de-
termined solution x (t,β,b) for all (β,b) in a large enough neighborhood of
(β∗,b∗) where b∗ is determined by the true state variable values

b∗ = B1x
∗ (0,β∗) + B2x

∗ (1,β∗) .

So far this leaves open the selection of appropriate B1 and B2. A hint is
provided by the need to calculate x (t,β,b) and ∇βx, ∇bx at each Gauss–
Newton step. Common to these computations is the solution of a sequence
of linear problems obtained by linearising the differential equation about the
current solution estimates. For example, ∇bx satisfies the linear system

d

dt
∇bx −∇xf∇bx = 0 ,

B1∇bx (0) + B2∇bx (1) = I .
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Computation of the trapezoidal rule approximations (5) to these quantities
requires the inversion of the matrix

F =


C11 C12

C22 C23
. . .

C(n−1)(n−1) C(n−1)n

B1 B2


where Cij = ∇xcij .

Idea Choose B1, B2 so this matrix is well conditioned at x∗ (t,β∗).

Computation Begin by permuting the first block column of F to the last
position. A transformation of the first n − 1 block rows of the permuted
matrix to block upper triangular form by orthogonal S using Householder
transformations yields

R = STFP =


R11 R12 0 · · · 0 R1n

R22 R23 · · · 0 R2n
. . .

...
...

R(n−1)(n−1) R(n−1)n

B2 B1

 . (7)

This orthogonal factorization affects quantities that depend on the differen-
tial equation only. The first and last block components of the solutions to
the linearised equations with matrix F are determined by the last two block
rows of R and so depend directly on B1 and B2. To compute suitable values
make a second orthogonal factorization

[
R(n−1)(n−1) R(n−1)n

]
=
[
UT 0

] [ QT1
QT2

]
.
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It follows that
[
B2 B1

]
= QT2 provides an appropriate choice.

The embedding method has advantages.

• An estimate of the boundary conditions can be computed by the above
procedure given suitable initial x0c . Previous work illustrated the sta-
bility advantages [3].

• It is readily adapted to make use of standard Gauss–Newton nonlinear
least squares solvers and differential equation boundary value software.

• The availability of good boundary value software is important if the
differential equation is difficult.

It has disadvantages.

• What happens if 1 −
∥∥∥QT2 (x0c)T Q2 (x∗c)

∥∥∥ is close to 1? Good initial

conditions are important!

• The economics of solving a nonlinear boundary value problem for every
function evaluation needs attention.

• The extra parameters b are not directly relevant to the problem for-
mulation.

2.2 Simultaneous estimation

Let

ri = yi −Oxi and Φ (xc) =
1

2n

n∑
i=1

‖ri‖2 .



2 Methods C113

Then the simultaneous method formulates the estimation problem as a con-
strained nonlinear least squares problem for the nm+ p unknowns (xc , β):[

x̂c
β̂n

]
= arg min

xc,β
Φ (xc) ; c (xc,β) = 0 . (8)

Solution of (8) falls within the scope of standard methods of sequential
quadratic programming [2]. However, note that the number of constraints
increases as the discretization of the differential equation is refined. This
provides a context in which it is necessary to exploit the sparsity structure
of the problem formulation.

To summarise the solution process, introduce the problem Lagrangian

L (xc,β,λc) = Φ (xc) +

n−1∑
i=1

λTi ci (xc,β) . (9)

The necessary conditions for a stationary point give

∇((x,β),λ)L (xc,β,λc) = 0 . (10)

The corresponding Newton iteration is[
∇2(x,β)L CT

C 0

] 4x
4β
4λ

 = −

[
∇(x,β)LT

cc

]
, (11)

where C = ∇(x,β)cc ∈ Rnm+p → R(n−1)m+p. The simultaneous method has
advantages.

• It is completely specified given initial estimates of xc , β , λc . I have
shown [5] that the choice λc = 0 is typically suitable in large samples.

• Economy—the simultaneous method avoids the work required to solve
nonlinear boundary value problems at each step of the embedding
method.
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It has disadvantages.

• The number of constraints grows without bound as the discretization
is refined.

• This means that so does the number of constraint second derivatives
that must be computed.

• Solution strategies such as mesh refinement are more difficult to for-
mulate as exact state variable values are known only at the solution.

3 Equivalence

Superficially the embedding and simultaneous methods look rather different.
This is not misleading. The relatively arbitrary component in the embedding
method has been noted, while the simultaneous method has a surprising
depth of structure. Perhaps the most obvious feature in common is that
they address the same problem! However, some progress is possible on the
question of equivalence. Specifically, an isolated local minimum of the sums
of squares of residuals for one method is also an isolated local minimum of
the sum of squares of residuals of the other.

Let SS (x) be the sum of squares of residuals in the simultaneous method
corresponding to feasible x, and let SE (x,b) be the sum of squares of resid-
uals in the embedding method corresponding to given boundary vector b.
Let xS be an isolated local minimum of the simultaneous method in a ball
R (xS, ρ) of radius ρ for some ρ > 0 . Then direct substitution gives

B1xS(0) + B2xS(1) = bS .

Because xS satisfies (5) the corresponding sum of squares is defined for the
embedding method and SE (xS,bS) = SS (xS). Assume (xS,bS) is not a
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corresponding local minimum of SE (x,b). Then there exists x = xP ∈
R (xS, ρ), and b = bP such that

SE (xP,bP) < SE (xS,bS) .

However, xP is feasible for the simultaneous method. Thus

SS (xP) = SE (xP,bP) < SS (xS) .

This is a contradiction. It follows that (xS,bS) provides a local minimum for
both methods. The argument can be reversed to show that if (xE,bE) is a
local minimum of the embedding method then it is a local minimum of the
simultaneous method also.

This is a non–constructive argument. A more interesting result would
be one that addressed more of the structure of the methods. For example,
it would be interesting to show that satisfaction of necessary conditions for
either the embedding or simultaneous methods could be deduced from satis-
faction of the other. This would be particularly interesting for the discussion
of consistency in the next section as a direct proof of consistency for the
simultaneous method appears to be lacking.

4 Consistency

Differential equation estimation by the embedding method becomes a conven-
tional maximum likelihood estimation problem if the boundary value prob-
lems are solved exactly. Thus methods for showing consistency of maximum
likelihood can be applied to the embedding method also. The following argu-
ment [4] has the advantage that it avoids the usual assumption of knowledge
of the global maximum of the likelihood function. It has the further advan-
tage that it extends without difficulty when the likelihood is only evaluated
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approximately. The maximum likelihood problem has the form

β̂n = arg max
β

Ln (y,β) = arg max
β

n∑
i=1

L (yi, ti,β) ,

where L corresponds to the log of the relevant probability density. Assume
the ti equispaced, then

1

n
∇βL (y,β)

a.s.→
n→∞

∫ 1
0

E∗ {∇βL (y, t,β)}dt , (12)

where the expectation is evaluated using the true density. This gives a lim-
iting form of the necessary conditions

∇βLn (y,β) = 0 . (13)

It follows from a standard identity that β = β∗ is the limiting solution. The
Kantorovich form of Newton’s method is used to show that β̂n

a.s.→
n→∞ β∗. The

idea is to apply this to solve the necessary conditions starting from β∗. The
result (12) can be used to show that the exact limiting solution leads to small
residuals in (13). Then the Kantorovitch result is used to show that β̂n is
close to β∗ almost surely.

The Kantorovich Theorem required has the following statement. Let
Jn = 1

n
∇2ββL , and Sρ = {β | ‖β− β0‖ < ρ}. If the following four conditions

are satisfied

1. ‖Jn (u) − Jn (v)‖ ≤ K1 ‖u − v‖ , for all u,v ∈ Sρ ,

2.
∥∥∥Jn (β0)

−1
∥∥∥ = K2 ,

3.
∥∥∥Jn (β0)

−1 1
n
∇xLn (y;β0)

T
∥∥∥ = K3 , and

4. ξ = K1K2K3 <
1
2

,
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then the Newton iteration started at β = β0 converges to a point β̂ ∈ Sρ
satisfying the estimating equation (13), and β̂ is the only root in Sρ. The
step to the solution β̂ is bounded by∥∥∥β̂− β0

∥∥∥
2
< 2K3 < ρ .

The consistency result for the embedding method that assumes exact
integration requires modification to take account of discretization error that
causes the objective function to differ from the true likelihood for all finite n.
The embedding consistency result extends to two important cases:

1. when each differential equation discretization grid Kn corresponds to
the observation grid Tn; and

2. when the discretization is made on a fixed grid tj ∈ K independent
of Tn , n → ∞ .

The maximum mesh spacing ∆t → 0 , n → ∞ in the first case so the solution
of the discretized problem tends to that of the differential equation at a
satisfactory rate. For the trapezoidal rule this is O

(
∆t2
)
. It is significantly

faster than any relevant stochastic rate (typically O
(
∆t1/2

)
) . In the second

case ∆t is fixed and finite. This means that truncation error effects persist
in the solution of the discretized problem as the size of the observation set
|Tn| → ∞ .

Typical results are the following.

1. If ∆t → 0 then consistency follows using an argument similar to that in
the exact integration case. The idea is to start the iteration for each n
at the exact integration solution (β̂n, b̂n) and use knowledge of the
discretization error to show that K3 = O (∆t)

2 so this start is close to
the finite grid solution (βn∆,b

n
∆). Consistency of the finite grid solution

now follows from the consistency for exact integration
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2. If ∆t fixed, small enough, then the best result possible is[
βn∆
bn∆

]
⊂ S

([
β∗

b∗

]
, O
(
∆t2
))
, n → ∞ .

It uses K3 = O (∆t)
2 for all n = |Tn| large enough.

5 Convergence rate results

The Gauss–Newton method for nonlinear least squares minimization is typ-
ically the method of choice in the embedding method [3]. It has the key
feature that the evaluation of second derivatives is avoided in the approxi-
mate Hessian. This has the consequential advantages of strong positive def-
initeness properties and excellent scale invariance. A key result in this case
is that the convergence rate approaches second order asymptotically if the
discretization error tends to zero as |Tn| → ∞ [4]. However, if ∆t fixed, small
enough, so that discretization error effects persist, then the convergence rate
is reduced to a fast first order rate if needed function values are found by
linear interpolation.

The Bock iteration [1] is the method of choice in the simultaneous method.
Here the Newton iteration is modified by setting the constraint second deriva-
tives to 0 in (11). The condition needed for ignoring these curvature terms
is that the associated Lagrange multipliers be small as ∆t → 0 . This re-
quirement is satisfied if the error terms are normally distributed. In this
case the multipliers are O

(
∆t1/2

)
so that the Bock iteration has a similar

convergence rate to Gauss–Newton [5]. This is a stronger condition on the
error structure than that required for the convergence rate estimates for the
embedding methods. The assumptions needed for the Gauss-Newton results
require only the weaker conditions that the errors are independent and have
bounded variance [4].
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6 In conclusion

The two main approaches to the differential equation estimation problem
have been considered from the point of view of their equivalence and consis-
tency. Consistency of the embedding method follows relatively easily from
standard results in regression analysis. Thus consistency of the simulta-
neous method follows from results establishing the equivalence of the two
approaches. While a relatively simple argument serves to establish a form
of equivalence, deeper results would have significance. One important step
would be an independent proof of consistency for the simultaneous method.
Both the Gauss–Newton and Bock algorithms make use of a strategy of ig-
noring certain second order partial derivatives. However, rather different
assumptions on measurement error distributions contrast the convergence
rate results obtained for the two methods.
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