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Abstract

Many methods have been used to improve the efficiency of itera-
tive numerical algorithms. Combining different methods is not always
possible because the performance of acceleration methods usually de-
pends critically on the precise form of the error in successive iterates,
and this form often changes when other acceleration methods are used.
Inexact implementation methods have proved particularly effective in
increasing the efficiency of iterations involving sparse matrices. This
article investigates the extent to which the efficiency of inexact inverse
iteration and the inexact Rayleigh quotient algorithm, for the numer-
ical computation of eigenvalues and eigenvectors of sparse matrices,
may be further increased by the use of the scalar epsilon algorithm, a
classical extrapolation technique. Some encouraging numerical results
are presented and some pointers are given for future research.
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1 Inexact inverse iteration

Inverse iteration [25] is the method of choice [15] for computing eigenvec-
tors of matrices when good approximations of the corresponding eigenvalues
are already known. For large matrices, it is also a popular method for si-
multaneous computation of one or more eigenvalues and the corresponding
eigenvectors when initial approximations of the eigenvalues are not available.

We consider the problem of computing the eigenvalue of a p×p matrix A
closest to a given number σ, and simultaneously computing the corresponding
eigenvector. Let the eigenvalues and the corresponding eigenvectors of A be
λ1, . . . , λp and x1, . . . , xp respectively, and let

0 < |λ1 − σ| < |λ2 − σ| ≤ · · · ≤ |λp − σ| . (1)

The recurrence relation used in inverse iteration is

(A− σI)uk+1 = αkuk , (2)

where the scalar αk is a normalizing factor. Then, for all k ∈ N,

uk =

[
x1 +

p∑
j=2

(
aj

a1

)(
λ1 − σ

λj − σ

)k

xj

]
a1

∏k−1
j=0 αj

(λ1 − σ)k
, (3)
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where u0 =
∑p

j=1 ajxj , so that, for appropriately chosen αk, uk → x1 as
k → ∞ . (In practice, roundoff ensures that uk → x1 even in the excep-
tional case a1 = 0 [25]; the inexact procedures described here are even more
advantageous in this case.) If the αk in (2) are chosen so that, for all k,

u∗
k+1uk = u∗

kuk , (4)

then it follows from (1), (3) and the binomial theorem that uk → x1 and
αk → λ1 − σ as k → ∞ , and there exist constants cj and dj, independent
of k, such that

λ1 − σ

αk

= 1+

∞∑
j=1

cjd
k
j , (5)

and |dj| ≤ |λ1 − σ|/|λ2 − σ| < 1 , for all j.

If σ is sufficiently close to λ1, a single iteration is often sufficient [25].
We are concerned with the case in which a good initial approximation of λ1

is not available. In this case, convergence can be quite slow, and we seek
methods of improving efficiency.

When A is large and sparse, (2) is normally solved by iterative meth-
ods. Computation of each uk (a single ‘outer iteration’) then requires sev-
eral ‘inner iterations’, which compute successive approximations of that uk.
Computational cost is roughly proportional to the total number of inner it-
erations. This number can be reduced substantially by using ‘inexact inverse
iteration’ [11, 13, 14, 16, 22]. The convergence rate of iterative methods is
usually not significantly affected if the initial iterates are computed less ac-
curately than the later ones. The effect of inexact computation of the initial
iterates is comparable to that of using a slightly different initial approxima-
tion. The situation is similar with inexact implementations of Newton-like
methods [4, 9, 18]. This contrasts with inexact implementation of Krylov
methods, which require highest accuracy in the early iterations [6, 20]. With
inexact inverse iteration, the exit criteria for the inner iteration are less de-
manding for the early steps of the outer iteration than for the later ones.
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The efficiency of the method depends on the choice of exit criteria for the
inner iteration [14, 16].

A popular method of accelerating the convergence of (2) for Hermitian A
is Rayleigh quotient iteration (rqi), in which the constant shift σ in (2) is
replaced by the variable shift σk = u∗

kAuk/u
∗
kuk . Inexact implementation

of the Rayleigh quotient iteration has been considered by various authors [5,
13, 19, 21, 22]. Other variable shifts were considered by Spence et al. [11, 12].
For non-Hermitian A, Rayleigh quotient methods using σk = w∗

kAuk/w
∗
kuk ,

where wk is the current approximation to the left eigenvector, can also be
used, although this nearly doubles the amount of calculation required for
each iteration. Provided the eigenvalue is not too ill-conditioned, the shift
σk = u∗

kAuk/u
∗
kuk can also be useful in the non-Hermitian case. We used

σk = û∗
kAûk/û

∗
kûk in our calculations, where ûk denotes the approximation

to uk obtained when (2) is solved inexactly by terminating the inner iteration
before convergence is obtained.

The substantial advantages of properly implemented inexact methods are
clear, and we are not aware of any serious disadvantages. A possible minor
disadvantage might be a reduction in the effectiveness of certain extrapolation
techniques, as these are particularly sensitive to the exact asymptotic form
of the error. For example, the asymptotic form of the error uk − x1 in (3) as
k → ∞ is ideal for Wynn’s ε-algorithm [2, 8, 26]. Inexact implementation
destroys this ideal form, making the use of the ε-algorithm more risky. This
article describes our experience using the ε-algorithm with inexact methods.
Our numerical results support the hypothesis that the ε-algorithm can still be
effective when appropriate inexact methods are used, provided that ‖ûk−uk‖
is sufficiently small compared with ‖uk−x1‖. In this case, the optimum choice
of exit criteria for the inner iteration still presents a challenge. If they are
too strict then too many inner iterations per step will be demanded, but if
they are not strict enough the extrapolation may fail.

We used the ε-algorithm to accelerate the convergence of both the inexact
inverse iteration algorithm of Lai et al. [16] and the inexact rqi, both with
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various exit criteria, using the same test matrices as Lai et al. These matri-
ces are real but non-symmetric. Our algorithms are described in Section 2
and our numerical results presented in Section 3. We have not attempted to
compare the performance of the ε-algorithm with that of other extrapolation
methods. We simply used the ε-algorithm to show that inexact implementa-
tion does not necessarily prevent the effective use of extrapolation.

2 Using the ε-algorithm

A good introduction to the theory of the ε-algorithm is given by Brezinski
and Redivo Zaglia [8]. Given a sequence {βk} of scalars, the scalar ε-algorithm

(sea) computes the double sequence ε
(k)
n defined by

ε
(k)
n+1 = ε

(k+1)
n−1 +

1

ε
(k+1)
n − ε

(k)
n

, k, n = 0, 1, . . . , (6)

where, for all k, ε
(k)
−1 = 0 and ε

(k)
0 = βk . When applied to sequences of

the form (5), this algorithm effectively eliminates the most slowly decaying
error terms. Vector variants of the algorithm can also be applied to uk,
and have been used to compute matrix eigenvalues and eigenvectors [7] and
their sensitivities [2]. However, these vector variants require much more
computational effort, and in this case it is better to apply the original scalar ε-

algorithm (sea) to the sequence (αk)
−1. This produces a sequence,

(
ε

(0)
k

)−1
+

σk+1 , which converges more rapidly to λ1. Having a more accurate eigenvalue
estimate then enables eigenvectors to be computed more efficiently. Our aim
is to test whether the ε-algorithm can also be useful with inexact methods,
when the αk no longer satisfy (5) exactly.

All our algorithms are readily derived from Algorithm 1 below, which
describes our implementation of the inexact Rayleigh quotient algorithm with
the sea. To facilitate comparison of our algorithms with that of Lai et al. [16],
we use a similar format. In particular, we use generic parameters critstop
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and ρk for the stopping criteria for the outer and inner iterations respectively
and a generic linear functional ` for scaling. We tried various choices of critstop

in step 22 of Algorithm 1, some of them using |ε
(0)
k − ε

(2)
k−2|/|ε

(0)
k |, and all

led to the same conclusion on the relative merits of the methods. Results
reported in Section 3 used critstop = res, where “res” is defined in step 20 of
Algorithm 1. We tested three choices of ρk which, following Lai et al. [16], we
labelled r1-invit, r2-invit and r3-invit. We tested four different linear
functionals `. Best results were obtained with

`(vk+1) = v∗k+1uk/u
∗
kuk , k ≥ 0 , (7)

which is consistent with (4), and which was used to obtain the results re-
ported here. Detailed results are reported elsewhere [24].

The algorithm for simple inexact inverse iteration, is the same as Algo-
rithm 1, except that steps 5 and 14 are omitted, and, for all k, σk is replaced
by the constant σ. We compared these algorithms with the corresponding
algorithms without the ε-algorithm, that is with steps 8 and 11–13 omitted
and ε

(0)
k replaced by ε

(k)
0 in step 19.

3 Numerical results

For step 2 and step 7 (the inner loop), we used the bi-cgstab algorithm [23],
with different preconditioners for our two examples. We computed the eigen-
value of smallest magnitude, and the corresponding eigenvector, using σ = 0 .
It is quite likely that, with a choice of σ closer to λ1, the rqi (but not the
ε-algorithm) would have produced a smaller gain than reported here. We
generated u0 randomly using the rand command of matlab.

For all three tested methods used to compute ρk+1, and for both examples,
the ε-algorithm generally improved the performance of both simple inverse
iteration and rqi, though the improvement produced by the ε-algorithm
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Algorithm 1: Inexact Rayleigh quotient iteration

Data: A, σ, tol > 0, kmax, a vector u0 (initial approximation) and a
linear functional `. (Typically `(vk+1) = u∗

kvk+1/u
∗
kuk .)

Result: the eigenvalue λ of A closest to σ, and the corresponding
eigenvector uk, using sea and rqi, with accuracy satisfying
critstop < tol.

Initialize ρ0 = ρ1 = 1 , k = 1 , res = tol + 1 , and ε
(0)
−1 = ε

(1)
−1 = 0 ;1

Compute v1 such that ‖(A− σI)v1 − u0‖ ≤ ρ0 ;2

ε
(0)
0 = `(v1) ;3

u1 = v1/ε
(0)
0 ;4

σ1 = σ ;5

repeat6

Compute vk+1 such that ‖(A− σkI)vk+1 − uk‖ ≤ ρk ;7

ε
(k+1)
−1 = 0 ;8

ε
(k)
0 = `(vk+1) ;9

uk+1 = vk+1/ε
(k)
0 ;10

for i = 1, . . . , k do11

Compute ε
(k−i)
i by the scalar ε-algorithm as given in (6);12

end13

σk+1 = u∗
k+1Auk+1/u

∗
k+1uk+1 ;14

Compute ρk+1 . This is15

|ε
(k)
0 − ε

(k−1)
0 |/(k|ε

(k)
0 |) for r1-invit;16

‖uk+1 − uk‖/(k|ε(k)
0 |) for r2-invit;17

‖uk+1 − uk‖ for r3-invit;18

λ = 1/ε
(0)
k + σk+1 ;19

res = ‖Auk+1 − λuk+1‖/‖uk+1‖ ;20

k = k+ 1 ;21

until k >= kmax or critstop < tol ;22

Output λ, uk, res and k. Stop.23



3 Numerical results C244

without the rqi was generally less than the improvement to simple inverse
iteration produced by the rqi without the the ε-algorithm. In general the im-
provement produced by the ε-algorithm was slightly greater with the method
r1-invit than with r2-invit or r3-invit, and r1-invit was used to obtain
the numerical results reported here.

Our first example is the n3×n3 banded block-Toeplitz matrix sa3d [16].
This matrix arises in the classical finite difference solution, with mesh length
h = 1/(n+ 1), of the three dimensional problem

−∆φ(x, y, z) +
∂φ(x, y, z)

∂x
= λφ(x, y, z) in Ω,

φ(x, y, z) = 0 on ∂Ω ,

(8)

where Ω = (0, 1)3. (The definition of sa3d by Lai et al. [16] contains a
typographical error. The block Cn should be tridiag[−1−h/2, 6,−1+h/2].)
Eigenvalues of Cn are found by symmetrizing [25, page 336] [1, Remark 2].
Separation of variables then shows that the eigenvalues of sa3d are

6− 2 cos(qπh) − 2 cos(rπh) − 2
√
1− (h/2)2 cos(sπh) ,

q, r, s = 1, . . . , n . Following Lai et al. [16], we take n = 15 , so that sa3d is
3375×3375 , it has 22275 nonzero elements, and its five smallest eigenvalues
are 0.11624635, 0.2300023, 0.2300578, 0.2300578 and 0.3438138.

We present results for Algorithm 1 (Rayleigh quotient iteration and scalar
ε-algorithm) and two variants, all using a diagonal preconditioner:

• rqi-sea (Algorithm 1)

• rqi-nosea (Rayleigh quotient iteration but without the sea)

• norqi-nosea (Simple inexact inverse iteration without the sea)
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Table 1: Number of inner (and outer) iterations for sa3d with diagonal
preconditioner

tol 10−4 10−6 10−8 10−10 10−12

rqi-sea 48 (3) 63 (4) 63 (4) 91 (5) 91 (5)
rqi-nosea 48 (3) 63 (4) 91 (5) 91 (5) 140 (6)
norqi-nosea 89 (8) 153 (15) 218 (22) 275 (28) 350 (35)

Table 2: Number of inner (and outer) iterations for jpwh991 with ssor
preconditioner

tol 10−4 10−6 10−8 10−10 10−12

rqi-sea 19 (3) 32 (4) 54 (5) 54 (5) 54 (5)
rqi-nosea 32 (4) 54 (5) 54 (5) 54 (5) 102 (6)
norqi-nosea 34 (5) 87 (9) 143 (12) 239 (16) 326 (19)

Table 1 shows the number of inner iterations (followed in brackets by the
number of outer iterations) needed for various values of the accuracy tol.

Our next example is the matrix jpwh 991 from the Harwell–Boeing
Sparse Matrix Collection. This 991 × 991 matrix is derived from a circuit
physics model [10]. It can be downloaded from the Matrix Market web
site [17], which also gives a structure diagram and other information. Fig-
ure 1 shows the distribution of all its eigenvalues. The seven eigenvalues
of smallest magnitude are −0.1206708, −0.43112, −0.435934, −0.453105,
−0.497937, −0.4998651 and −0.686086.

For this example we used an ssor preconditioner [3]. We present results
gained with a fixed relaxation parameter, ω = 0.8 . We also examined vari-
able relaxation parameters [24]. Table 2 gives the number of inner iterations
(and outer iterations in brackets) used by three methods for various values
of the accuracy tol.
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Figure 1: Eigenvalues of jpwh 991.

4 Concluding remarks

Although our numerical tests considered only the numerical examples of Lai
et al. [16], we have no reason to believe that our results are any better than
can be expected for most examples. Indeed, in both our examples, |λ2|, |λ3|

and |λ4| are very close to each other, but not close to |λ1|, thus making d2

and d3 in (5) very close to d1, and reducing the effectiveness of eliminating
the most slowly decaying terms. This suggests that the ε-algorithm may
be even more effective when there are no such tight clusters of eigenvalues.
Extrapolation methods must always be implemented with caution, but this
still applies when exact methods are used. In spite of the extreme sensitivity
of extrapolation methods to errors, our results indicate that any reduction
in the usefulness of extrapolation with inexact methods is minor, and cer-
tainly does not offset the known advantages of inexact methods. Of course,
any general recommendation on extrapolation must be justified by theoret-
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ical analysis. This will require a bound on the truncation error caused by
the early termination of the inner iterations. Since this error depends on
the method used in steps 2 and 7 of Algorithm 1, different methods may re-
quire separate analysis. However, our results are sufficiently encouraging to
suggest such an analysis would be worthwhile. Another question of interest
is whether changes in the method of implementing the ε-algorithm produce
improvement. For example, since the later uk are calculated more accurately
than the earlier ones, is it better to apply the ε-algorithm to the sequence
{uk}

k=∞
k=K for some K > 0 , rather than to the entire sequence {uk}

k=∞
k=0 , as in

our calculations? If so, are there simple criteria for finding the optimal K?
Some of us are continuing work on the questions raised here and would be
interested in hearing from others who may be doing the same.
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