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Exact and numerical solutions for effective
diffusivity and time lag through multiple layers
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Abstract

We consider diffusion through multiple layers, with application to
heat transport. An exact solution is derived and the time lag for
heat conduction across the layers is studied. We show the limitations
of traditional methods of averaging the diffusivity, which are only
applicable in the steady state or for numerous layers.
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Figure 1: n layer problem, with nomenclature explained in the text.
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1 Introduction

Diffusion through multiple layers has several applications, including deter-
mining when the cold point of a steel coil reaches the annealing tempera-
ture [6, 13]. Figure 1 depicts the problem of n layers, with the standard
diffusion equation

∂Ui

∂t
= Di

∂2Ui

∂x2
, for i = 1, 2, 3, . . . , n , (1)

applicable in each layer. In Figure 1, Ui is the temperature in layer i at
time t, Di is the diffusivity of a given layer and li is the width of the layer.
Continuity in temperature and flux is assumed at all the internal boundaries.
Various solutions can be found in the literature, for different physical appli-
cations, boundary and initial conditions, and with subtly different equations.
These include solutions in Cartesian coordinates for two layers [8, 15, 16] and
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n layers [9, 11, 14, 18], cylindrical n layer solutions [10], and background on
the eigenfunctions [19]. Gilbert and Mathias [12] found semi-analytic so-
lutions by calculating the transfer function for a multiple layered material,
although their method involves numerical inversion of the Laplace transform.
Azeez and Vakakis [4] found solutions for conduction in composite cylinders
using a combined Hankel and Laplace transform method. However, their
solution is complicated to implement due to the double numerical inversion
of the transformed solution.

A common approach for the n layer problem is to consider an effective
diffusivity, and solve the analogous one layer problem. Many authors use the
simple approximation for the average diffusivity, Dav, of

L

Dav

=
l1

D1
+
l2

D2
+ · · · , (2)

where li is the width of material with diffusivity Di, and L =
∑
li. This is

true with steady state heat transport or in the case of numerous layers, but is
not true in general. Absi et al. [1] describe a brief numerical and experimental
comparison of this relationship versus the full coupled numerical system for
two layers, illustrating its limitations. Aguirre et al. [2] determined a solution
for sinusoidally imposed temperature, calculating an effective diffusivity for
a uniform composite material. The effective diffusivity was found in terms of
the imposed frequency where Equation (2) is reflected in the low frequency
limit when the material is effectively in quasi-steady state. A similar result
was obtained by Shigesada et al. [17] for reaction diffusion waves in periodic
materials when the layers are thin.

The time lag is a measure of the heat transport time across the layers. It
is calculated by determining when the temperature at the end of the region,
x = xn , has reached a critical thresholdUc. Several publications in the 1960’s
dealt with the diffusive time lag through composites, in Cartesian, cylindrical
and spherical geometries with Ash et al. [3] giving detailed solutions. These
are summarised by Barrer [5] for some of the usual layer configurations. For
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a single layer, Ash et al. [3] calculate the time lag to be

tL =
L2

6D
. (3)

The general expression given for the time lag in a slab with n layers by Ash
et al. [3] is

tLslab =

[
n∑
i=1

li

Di

]−1 [ n∑
i=1

{
l2i
2Di

n∑
j=i

(
lj

Dj

)
−

l3i
3D2i

}

+

n−1∑
i=1

{
li

Di

n∑
k=i+1

(
lk

n∑
j=k

[
lj

Dj

]
−

l2k
2Dk

)}]
. (4)

The exact solution to this n layer diffusion problem is determined in
Section 2. We discuss how we calculate the time lag, and the accuracy of the
average diffusivity and Ash et al. [3] time lag methods in Section 3.

2 Exact solution

The n layer case has diffusion given by Equation (1) and

U1(x0, t) = θ ,
∂Un

∂x

∣∣∣∣
xn

= 0 , (5)

Ui(xi, t) = Ui+1(xi, t) , for i = 1, 2, 3, . . . , (n− 1) , (6)

Di
∂Ui

∂x

∣∣∣∣
xi

= Di+1
∂Ui+1

∂x

∣∣∣∣
xi

, for i = 1, 2, 3, . . . , (n− 1) , (7)

Ui(x, 0) = fi(x) , for i = 1, 2, 3, . . . , n . (8)

Equation (5) represents the external boundary conditions, for constant θ on
the left hand side, Equations (6) and (7) represent continuity between layers,
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and Equation (8) is the initial condition for some fi(x). Due to the constant
boundary condition at x = x0 a transformation described by Carslaw and
Jaeger [7] is used, where Ui = wi(x) + vi(x, t). That is, Ui is split into the
steady state solution, wi(x), and the transient solution, vi(x, t), such that
vi(x, t)→ 0 as t→∞ .

The steady state solution then satisfies

Di
∂2wi

∂x2
= 0 , for i = 1, 2, 3, . . . , n , (9)

w1(x0) = θ ,
∂wn

∂x

∣∣∣∣
xn

= 0 ,

wi(xi) = wi+1(xi) , for i = 1, 2, 3, . . . , (n− 1) ,

Di
∂wi

∂x

∣∣∣∣
xi

= Di+1
∂wi+1

∂x

∣∣∣∣
xi

, for i = 1, 2, 3, . . . , (n− 1) .

While this trivially gives wi(x) = θ, a general solution approach applicable
to more general boundary conditions is given. Equation (9) is integrated,
giving the steady state solution

wi(x) = qi(x− xi−1) + hi , (10)

where qi and hi are constants. The external boundary conditions give h1 =

θ and qn = 0 , and the internal boundary conditions result in recursively
defined constants

qi+1 =
Di

Di+1
qi and hi+1 = hi + qili . (11)

Applying the external boundary conditions gives qi = 0 and hi = θ . There-
fore, the steady state solution is

wi(x) = θ . (12)

The transient solution, vi(x, t), satisfies

∂vi

∂t
= Di

∂2vi

∂x2
, for i = 1, 2, 3, . . . , n , (13)
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v1(x0, t) = 0 ,
∂vn

∂x

∣∣∣∣
xn

= 0 ,

vi(xi, t) = vi+1(xi, t) , for i = 1, 2, 3, . . . , (n− 1) ,

Di
∂vi

∂x

∣∣∣∣
xi

= Di+1
∂vi+1

∂x

∣∣∣∣
xi

, for i = 1, 2, 3, . . . , (n− 1) ,

vi(x, 0) = fi(x) −wi(x) = gi(x) , for i = 1, 2, 3, . . . , n ,

which is separable. That is, let vi(x, t) = Xi(x)T(t), resulting in the two
ordinary differential equations T ′ = µ T and X′′

i = (µ/d2i )Xi and the boundary
conditions

X1(x0) = 0 (14)

X′
n(xn) = 0 (15)

Xi(xi) = Xi+1(xi) , for i = 1, 2, 3, . . . , (n− 1) (16)

Di
∂Xi

∂x

∣∣∣∣
xi

= Di+1
∂Xi+1

∂x

∣∣∣∣
xi

, for i = 1, 2, 3, . . . , (n− 1) , (17)

where di =
√
Di for simplicity later. The cases where µ = 0 and µ = +λ2

yield trivial solutions, but when µ = −λ2,

Xi = Ai sin

(
λm

di
(x− xi−1)

)
+ Bi cos

(
λm

di
(x− xi−1)

)
. (18)

Applying the boundary conditions gives a series of expressions, which can be
rewritten in terms of one of the arbitrary constants. For simplicity, A1 is the
chosen constant. Thus Equation (18) becomes

Xi = A1

[
K1,i sin

(
λm

di
(x− xi−1)

)
+ K2,i cos

(
λm

di
(x− xi−1)

)]
. (19)

By definition of the arbitrary constant, K1,1 = 1 and from Equation (14),
K2,1 = 0 . The remaining constants are determined by the internal boundary
conditions, Equations (16) and (17), and are recursively defined as

K1,i+1 = K1,i
di

di+1
cos

(
λm
li

di

)
− K2,i

di

di+1
sin

(
λm
li

di

)
, (20)
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K2,i+1 = K1,i sin

(
λm
li

di

)
+ K2,i cos

(
λm
li

di

)
.

The eigenvalue, λm, is defined using Equation (15) as

K1,n cos

(
λm
ln

dn

)
− K2,n sin

(
λm
ln

dn

)
= 0 . (21)

Therefore the transient solution is

vi(x, t) =

∞∑
m=1

Cme
−λ2

mtXi(x) , (22)

where Cm includes the constant A1 from Xi. Using the initial condition,

vi(x, 0) = gi(x) =

∞∑
m=1

CmXi(x) . (23)

Sturm–Liouville theory yields an orthogonality condition

n∑
i=1

∫xi

xi−1

Xi(x, λm)Xi(x, λp)dx =

{
0, m 6= p ,

a, m = p ,
(24)

where a is some constant. The constants K1,i and K2,i in Equation (19)
effectively act as weighting terms in the summation, matching the internal
boundary conditions. Hence

Cm =

∑n
i=1

∫xi

xi−1
gi(x)Xi(x)dx∑n

i=1

∫xi

xi−1
X2i (x)dx

. (25)

The complete solution is therefore

Ui(x, t) = θ+

∞∑
m=1

Cme
−λ2

mtXi(x) . (26)

This exact solution was verified against a numerical solution, using second
order central finite differences and an Euler time step. Excellent agreement
was found. Equation (26) is also valid for the simpler single uniform region.



3 Results C689

3 Results

To measure the accuracy of the average diffusivity approximation, Equa-
tion (2), we calculate the time lag. That is, we determine when the tem-
perature has reached the critical threshold Uc at the right hand end of the
region, x = xn. A key issue is determining a suitable threshold value, which
is discussed shortly.

Two basic methods were employed to calculate the time lag. First, the
Ash et al. [3] time lag expressions were used from Equations (3) and (4).
Second, the exact solution, Equation (26), is written as

Uc −

∞∑
m=1

e−λ2
mtLXn(x = xn) = 0 , (27)

and solved numerically using matlab for the unknown time lag tL.

Our results here use a region x0 = 0 to xn = 1 and equal repeating layers
with diffusivities Da and Db. Hence, with n layers, li = 1/n . The initial
condition used is fi(x) = 0 . We consider two cases (labelled ‘Exact 1’ and
‘Exact 2’ in the figures): Da = 1/9 and Db = 1 ; and Da = 1 and Db = 1/9 .
Both give Dav = 0.2 from Equation (2).

Figure 2 depicts the time lag as a function of the number of repeated
layers, where Uc = 0.1665 . The solution labelled ‘Exact Dav’ is the exact
solution, Equation (27), with uniform diffusivity Dav. The ‘Dav’ solution is
where Equation (3) was used. The threshold value, Uc, was chosen such that
the ‘Exact Dav’ and ‘Dav’ match, fulfilling an assumption of Ash et al. [3].
The ‘Exact 1’ and the ‘Exact 2’ solutions approach the average diffusivity
solutions from opposite sides with the ‘Exact 2’ matching the ‘DAsh’ solution
closer than the ‘Exact 1’ solution. This suggests the Ash et al. [3] time lag
calculation favours one particular combination of layered diffusivities.

Due to the significance of the threshold value on the result, we investigate
Uc = 0.01 with results presented in Figure 3. However, this threshold value
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Figure 2: Time lag for Uc = 0.1665 .
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Figure 3: Time lag for Uc = 0.01 .

transgresses an assumption of Ash et al. [3], thus it is not reasonable to com-
pare their result in this scenario. As expected, the ‘Exact 2’ solution behaves
much the same as in Figure 2. However, the behaviour of the ‘Exact 1’ solu-
tion is intriguing as it crosses the ‘Exact Dav’ solution and warrants further
investigation.

In both Figure 2 and Figure 3 it is evident that a substantial number of
repeated layers are required to get good agreement with the commonly used
approximation given by Equation (2).
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4 Conclusions

We expected the average diffusivity solution to hold at steady state and with
a sufficient number of layers. However, a remarkably large number of layers
were required before the exact solution converged. Therefore, care must be
taken when using the average diffusivity approximation as the time lag can
be significantly mis-estimated for relatively few layers.

We expected the Ash et al. [3] method, resulting in Equation (4), to give
a good approximation of the time lag. However this was only true when the
diffusivities were ordered Da = 1 and Db = 1/9 , and was quite inaccurate
for the other case. In fact, our solution shows a much more complex be-
haviour. Further work is required in exploring how results vary with other
layer configurations.

Acknowledgements A scholarship from the School of Physical, Environ-
mental and Mathematical Sciences, unsw@adfa, supports Roslyn Hickson.
The assistance of Assoc. Prof. Harvinder Sidhu is appreciated. We thank
Dr. Anthony Tate for his stimulating discussions.

References

[1] J. Absi, D. S. Smith, B. Nait-Ali, S. Granjean, and J. Berjonnaux.
Thermal response of two-layer systems: Numerical simulation and
experimental verification. J. European Ceramic Soc., 25:367 – 37,
2005. doi:10.1016/j.jeurceramsoc.2004.02.005. C684

[2] N. M. Aduirre, G. G. De La Cruz, Y. G. Gurevich, G. N. Logninov,
and M. N. Kasyanchuk. Heat diffusion in two-layer structures:
photoacoustic experiments. Phys. Stat. Sol., 220:781–787, 2000.

http://dx.doi.org/10.1016/j.jeurceramsoc.2004.02.005


References C693

doi:10.1002/1521-3951(200007)220:1¡781::AID-PSSB781¿3.0.CO;2-D.
C684

[3] R. Ash, R. M, Barrer, and D. G. Palmer. Diffusion in multiple
laminates. Brit. J. Appl. Phys., 16(6):873–884, 1965. C684, C685,
C689, C691, C692

[4] M. F. Abdul Azeez and A. F. Vakakis. Axisymmetric transient
solutions for the heat diffusion problem in layered composite media.
Int. J. Heat. Mass Transf., 43:3883–3895, 2000.
doi:10.1016/S0017-9310(99)00386-5. C684

[5] R. M. Barrer. Diffusion and permeation in heterogenous media., pages
165–215. Academic Press, London, 1968. C684

[6] S. I. Barry and W. L. Sweatman. Modelling heat transfer in steel coils.
ANZIAM J. (E), 2008. (accepted). C683

[7] H. S. Carslaw and J. C. Jaeger. Conduction of heat in solids.
Clarendon Press, Oxford, 1959. C686

[8] F. de Monte. Transient heat conduction in one-dimensional composite
slab: A ‘natural’ analytic approach. Int. J. Heat Mass Transfer,
43:3607–3619, 2000. doi:10.1016/S0017-9310(00)00008-9. C683

[9] F. de Monte. Multi-layer transient heat conduction using transition
time scales. Int. J. Thermal Sci., 45:882–892, 2006.
doi:10.1016/j.ijthermalsci.2005.11.006. C684

[10] M. Fukuda and H. Kawai. Diffusion of low molecular weight
substances into a fiber with skin-core structure – rigorous solution of
the diffusion equations in a coaxial cylinder of multiple components.
Polymer Engineering and Science, 34(4):330–340, 1994.
doi:10.1002/pen.760340415. C684

http://dx.doi.org/10.1002/1521-3951(200007)220:1<781::AID-PSSB781>3.0.CO;2-D
http://dx.doi.org/10.1016/S0017-9310(99)00386-5
http://dx.doi.org/10.1016/S0017-9310(00)00008-9
http://dx.doi.org/10.1016/j.ijthermalsci.2005.11.006
http://dx.doi.org/10.1002/pen.760340415


References C694

[11] M. Fukuda and H. Kawai. Diffusion of low molecular weight
substances into a laminar film. 1: Rigorous solution of the diffusion
equations in a composite film of multiple layers. Polymer Engineering
and Science, 35(8):709–721, 1995. doi:10.1002/pen.760350811. C684

[12] S. H. Gilbert and R. T. Mathias. Analysis of diffusion delay in a
layered medium. Biophys J., 54:603–610, 1988. C684

[13] M. McGuinness, W. L. Sweatman, D. Y. Baowan, and S. I. Barry.
Cold point determination in heat treated steel coils. In T. Marchant,
M. Edwards, and G. N. Mercer, editors, MISG Proceedings, 2008. C683

[14] J. R. Miller and P. M. Weaver. Temperature profiles in composite
plates subject to time-dependent complex boundary conditions.
Composite Structures, 59:267–278, 2003.
doi:10.1016/S0263-8223(02)00054-5. C684

[15] G. Otouranc and A.Z. Sahin. Eigenvalue analysis of temperature
distribution in composite walls. Int J. Energy Res., 25:1189–1196,
2001. doi:10.1002/er.747. C683

[16] G. Pontrelli and F. de Monte. Mass diffusion through two-layer porous
media: an application to the drug-eluting stent. Int. J. Heat Mass
Transfer, 50:3658–3669, 2007.
doi:10.1016/j.ijheatmasstransfer.2006.11.003. C683

[17] N. Shigesada, K. Kawasaki, and E. Teramoto. Travelling periodic
waves in heteregeneous environments. Theor. Population Biology,
30:143–160, 1986. C684

[18] Y. Sun and I. S. Wichman. On transient heat conduction in a
one-dimensional composite slab. Int. J Heat Mass Transfer,
47:1555–1559, 2004. doi:10.1016/j.ijheatmasstransfer.2003.09.011.
C684

http://dx.doi.org/10.1002/pen.760350811
http://dx.doi.org/10.1016/S0263-8223(02)00054-5
http://dx.doi.org/10.1002/er.747
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.11.003
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2003.09.011


References C695

[19] C. W. Tittle. Boundary value problems in composite media:
Quasi-orthogonal functions. J. Appl. Phys., 36(4):1486–1488, 1965.
doi:10.1063/1.1714335. C684

Author addresses

1. R. I. Hickson, School Physical, Environmental & Mathematical
Sciences, University of New South Wales @ ADFA, Canberra,
Australia.
mailto:r.hickson@student.adfa.edu.au

2. S. I. Barry, School Physical, Environmental & Mathematical
Sciences, University of New South Wales @ ADFA, Canberra,
Australia.

3. G. N. Mercer, School Physical, Environmental & Mathematical
Sciences, University of New South Wales @ ADFA, Canberra,
Australia.

http://dx.doi.org/10.1063/1.1714335
mailto:r.hickson@student.adfa.edu.au

	Introduction
	Exact solution
	Results
	Conclusions
	References

