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Average and deviation for the stochastic
FitzHugh–Nagumo system
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Abstract

An averaged system for the slow-fast stochastic FitzHugh–Nagumo
system is derived in this paper. The rate of convergence in probabil-
ity is obtained as a byproduct. Moreover the deviation between the
original system and the averaged system is studied. A martingale ap-
proach proves that the deviation is described by a Gaussian process.
The deviation gives a more accurate asymptotic approximation than
previous work.
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1 Introduction

The FitzHugh–Nagumo system arises as a simplification of the Hodgkin–
Huxley model describing signal transmission across axons in neurobiology [2,
e.g.]. Modelling the integral input from surrounding cells to the given neuron
as a random signal, the following stochastic FitzHugh–Nagumo system arises
with the activity uε(x, t) and recovery fields vε(x, t) satisfying

duε =
[
∂xxu

ε + uε − (uε)3 + vε
]
dt+ σ1 dW1 , (1)

dvε =
1

ε

[
∂xxv

ε + uε − vε
]
dt+

σ2√
ε
dW2 , (2)

with zero Dirichlet boundary conditions, and initial conditions uε(0) = u0 ∈
L2(−1, 1) and vε(0) = v0 ∈ L2(−1, 1) where L2(−1, 1) is the Lebesgue
space of square integrable real valued functions on the nondimensional inter-
val (−1, 1). W1(x, t) and W2(x, t) are mutually independent L2(−1, 1) val-
ued Wiener processes. In the following we denote by f(u, v) = u − u3 + v ,
g(u, v) = u − v and by A = ∂xx with zero Dirichlet boundary condition on
(−1, 1).
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Figure 1: an example realisation of the FitzHugh–Nagumo system (1)–(2)
with σ1 = 0 , σ2 = 3 , W2 = (I−A)−1Z for a cylindrical Wiener process Z(t),
and small parameter ε = 0.1 .

Figure 1 plots one example simulation of the FitzHugh–Nagumo system
(1)–(2) showing that W2, the noise forcing of v, feeds into the dynamics of u.
Assume ε > 0 is small. Then the FitzHugh–Nagumo system (1)–(2) has
two widely separated timescales. A simplified equation which governs the
evolution of the system over the long time scale is highly desirable.

Such a simplified equation, capturing the dynamics of the system on the
slow time scale, is often called an averaged equation. There is great deal
of work on averaging principles for deterministic ordinary differential equa-
tions [9, e.g.] and for stochastic ordinary differential equations [4, e.g.]. But
there are few results on averaging for stochastic partial differential equations
(spdes). Recently an averaged equation for a class of reaction–diffusion
equations with stochastic fast component was obtained by assuming that
nonlinear terms are all Lipschitz [1]. The resultant averaged equation is de-
terministic. This article derives the averaged equation (3) modelling (1)–(2)
and proves a square-root rate of convergence in probability. If for any fixed u,
the fast system (2) has a unique invariant measure µu, then as ε→ 0 , under a
mixing assumption, the solution uε of equation (1), converges in distribution
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Figure 2: an example realisation of the stochastic deviation (22) for small
parameter ε = 0.1 , σ2 = 3 and Q2 = (1− ∂xx)

−1.

to the solution of

du =
[
Au+ u− u3 + (I−A)−1u

]
dt+ σ1 dW1(t) , (3)

u(0) = u0 . (4)

Section 3 proves the convergence rate is 1/2 in the sense that

sup
0≤t≤T

E|uε(t) − u(t)| ≤ CTε1/2 (5)

for some positive constant CT .

Furthermore, the deviation between the original system and the averaged
system is determined, the deviation spde (22), as shown in the example
solution of Figure 2 . By estimate (5), Section 4 proves that as ε → 0

the limit of (uε(t) − u(t))/
√
ε is a Gaussian process and thus leads to the

spde (22) for the deviation. Including the deviation spde (22) gives a much
better approximation than the averaged equation (3) . In particular, when
the initial state u0 = 0 and there is no direct forcing of u, σ1 = 0 , as used
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in Figures 1 and 2 , then the averaged solution is identically u(t) = 0 . In
such a case, the dynamics of u as seen in Figure 1 are modelled solely by
deviations governed by the spde (22) .

2 Preliminaries and result on fast

component

Let H = L2(−1, 1) with L2-norm denoted by | · | and inner product by 〈·, ·〉.
For any α > 0 , u ∈ H define |u|α = |Aα/2u| and for α = 1 , the norm
is written as ‖ · ‖ . Then let Hα0 be the space of the closure of C∞

0 (−1, 1),
the space of smooth functions with compact support on (−1, 1), under the
norm | · |α . Furthermore, let H−α denote the dual space of Hα0 . Denote
by eAt, t ≥ 0 , the compact analytic semigroup defined by A on H and
by λ1 = −π2/4 the first eigenvalue of A . Also we are given H valued Q-
Wiener processes W1(t) and W2(t), t ≥ 0 , with covariance operator (spatial
correlation) Q21 and Q22 respectively, which are mutually independent on a
given probability space (Ω,F ,P) with F a complete σ-algebra on Ω [7].
Denote by E the expectation operator with respect to P. Here we assume
σ1 ∈ R , σ2 > 0 and make the hypothesis that

tr[(−A)1/2Q2i ] <∞ , i = 1, 2 . (6)

By Theorem 11.7 of Prato and Zabczyk [7] , we have the following result on
the fast component.

Theorem 1 Assume hypothesis (6). For any fixed u ∈ H, system (2)
has a unique stationary solution, ηεu(t), with distribution µu = N

(
η̄u , (I −

A)−1σ22Q
2
2/2+ (I−A)−2u⊗ u

)
with η̄u = (I−A)−1u , which is exponential

mixing in the following sense

E|vε(t) − ηεu(t)|
2 ≤ e−2(λ1−Cg)t/εE|v0 − ηεu(0)|

2 . (7)
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Moreover there is some ρ > 0 such that∣∣∣Ef(u, vε(t)) −

∫
H

f(u, x)µu(dx)
∣∣∣ ≤ C(1+ |v0|

2)e−ρt/ε . (8)

By the time scale transformation t→ τ = t/ε , (2) is transformed to

dv =
[
Av+ g(u, v)

]
dτ+ σ2 dW̃2(τ) , v(0) = v0 , (9)

where W̃2 is the scaled version of W2 and with same distribution. Then (9)
has a unique stationary solution ηu with distribution µu. Furthermore

f̄(u) :=

∫
H

f(u, v)µu(dv) = lim
t→∞

1

t

∫ t
0

f(u, ηu(s))ds , (10)

is well defined by the ergodic property of µu. It follows from the definition
that f̄(u) = u − u3 + η̄u . Furthermore, by a generalized theorem on con-
tracting maps depending on a parameter [1], vu(t) is Fréchet differentiable
with respect to u and

sup
u,v0∈H,0≤t≤T

|Duvu|L(H) ≤ CT (11)

where | · |L(H) is the operator norm.

3 Averaged equation

This section gives the averaged equation and, as a byproduct, the convergence
rate. First by the energy method [7] , for any T > 0 , there is a positive
constant CT which is independent of 0 < ε < 1 , such that

E sup
0≤t≤T

‖uε(t)‖2 + E|∂tu
ε|L2(0,T ;H−1) ≤ CT (‖u0‖2 + ‖v0‖2) (12)
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and for any positive integer m ,

E
∫ T
0

‖uε(s)‖2mds+ E
∫ T
0

‖vε(t)‖2ds ≤ CT (‖u0‖2m + ‖v0‖2m) . (13)

Then a lemma by Simon [8] implies {D(uε)}0<ε<1 , the distributions of uε ,
are tight in space C(0, T ;H), that is, for any κ > 0 there is a compact
set Kκ in C(0, T ;H) such that P{uε ∈ Kκ} > 1 − κ . Here Kκ is chosen as a
family of decreasing sets with respect to κ. Moreover, by the estimate (12)
and the Markov inequality, we further choose the set Kκ such that there is
some positive constant CκT , for uε ∈ Kκ , ‖uε(t)‖2 ≤ CκT , t ∈ [0, T ]. Then we
have the following averaged result.

Theorem 2 Assume hypothesis (6). Given T > 0 , for any u0 ∈ H, a
solution uε(t, u0) of (1) converges in probability to u in C(0, T ;H) which
solves (3)–(4). Moreover the convergence rate is 1/2 , that is, for some pos-
itive constant CT > 0

sup
0≤t≤T

E|uε(t) − u(t)| ≤ CT
√
ε .

Proof: For any κ > 0 we introduce a new probability space (Ωκ,Fκ,Pκ),
which is a subspace of (Ω,F ,P) defined by

Ωκ = {ω ∈ Ω : uε(ω) ∈ Kκ} , Fκ = {S ∩Ωκ : S ∈ F }

and

Pκ(S) =
P(S ∩Ωκ)

P(Ωκ)
for S ∈ Fκ.

Then P(Ω \Ωκ) ≤ κ by the choice of Kκ .

Now we restrict ω ∈ Ωκ and introduce an auxiliary process. For any
T > 0 , partition the interval [0, T ] into subintervals of length δ =

√
ε . Then
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construct processes (ũε, ṽε) such that for t ∈ [kδ, (k+ 1)δ),

ũε(t) = eA(t−kδ)uε(kδ) +

∫ t
kδ

eA(t−s)f(uε(kδ), ṽε(s))ds

+ σ1

∫ t
kδ

eA(t−s)dW1(s) , ũε(0) = u0 , (14)

dṽε(t) =
1

ε

[
Aṽε(t) + g(uε(kδ), ṽε(t))

]
dt+

σ2√
ε
dW2(t) ,

ṽε(kδ) = vε(kδ) . (15)

By the definition ofΩκ , {uε}ε is compact in space C(0, T ;H), there is CT > 0 ,
such that

|uε(t) − uε(kδ)|2 ≤ CTδ2 for t ∈ [kδ, (k+ 1)δ) . (16)

Then by the Itô formula and Gronwall lemma [7]

|vε(t) − ṽε(t)|2 ≤ CTδ2 , t ∈ [0, T ] . (17)

Moreover, by the choice of Ωκ and the growth of f(·, v), f(·, v) : H→ H−β is
Lipschitz with −1/2 ≤ β ≤ −1/4 . Then we have, by noticing (16) ,

|uε(t) − ũε(t)| ≤ CTδ , t ∈ [0, T ] . (18)

On the other hand, in the mild sense

u(t) = eAtu0 +

∫ t
0

eA(t−s)f̄(u(s))ds+ σ1

∫ t
0

eA(t−s)dW1(s) .

Then, using bzc to denote the largest integer less than or equal to z,

|ũε(t) − u(t)| ≤
∫ t
0

eA(t−s)
∣∣f(uε(bs/δcδ), ṽε(s)) − f̄(uε(bs/δcδ))

∣∣ds
+

∫ t
0

eA(t−s)
∣∣f̄(uε(bs/δcδ)) − f̄(uε(s))

∣∣ds
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+

∫ t
0

eA(t−s)
∣∣f̄(uε(s)) − f̄(u(s))

∣∣ds .
Moreover, by estimate (11), we have

1

τ

∣∣∣ ∫ τ
0

[f(uε(s), vuε(s)(δ)) − f(u(s), vu(s)(δ))
]
dδ
∣∣∣
H

≤ 2
[
‖uε(s)‖2 + ‖u(s)‖2 + sup

u,v0∈H,0≤t≤T
|Duv(t)|L(H)

]
|uε(s) − u(s)| .

Then by (10) we have for t ∈ [0, T ]

|ũε(t) − u(t)| ≤ CT
[
δ+

∫ T
0

|uε(s) − u(s)|ds
]
. (19)

As |uε(t) − u(t)| ≤ |uε(t) − ũ(t)| + |ũ(t) − u(t)| , by the Gronwall lemma
and (16), (18) and (19) we have for t ∈ [0, T ],

|uε(t) − u(t)| ≤ CT
√
ε . (20)

Now by the arbitrariness of κ , the proof is complete. ♠

4 Deviation estimate

The previous section proved that, formally, uε(t) = u(t) + O(ε1/2). This
section determines the coefficient of ε1/2, the so-called deviation:

zε(t) =
1√
ε
(uε − u) . (21)
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Theorem 3 zε converges in distribution to a process z in space C(0, T ;H)

which solves

dz =
[
Az+ (1− 3u2)z

]
dt+ σ2(I−A)−1Q2 dW̄(t) (22)

where W̄(t) is a cylindrical Wiener process defined on an enlarged probability
space.

Proof: The deviation zε satisfies, by (1) and (3)

żε = Azε +
1√
ε

[
f(uε, vε) − f̄(u)

]
, zε(0) = 0 . (23)

Then by the assumptions on f and the compact property eAt, we have for
some positive 1 > δ > 0 and 1 > α > 0 such that

E|zε|Cδ(0,T ;H) ≤ CT (|u0|2 + |v0|
2) (24)

and E sup
0≤t≤T

|zε(t)|α ≤ CT,α(|u0|2 + |v20|) . (25)

Here Cδ(0, T ;H) is the Hölder space with exponent δ. Then by the compact
embedding of Cδ(0, T ;H)∩C(0, T ;Hα) ⊂ C(0, T ;H), the distribution of {zε}ε ,
denoted by {νε}ε , is precompact.

Write zε = zε1 + zε2 with

żε1 = Azε1 +
1√
ε
(ηεu − η̄u) , z1(0)

ε = 0 (26)

and żε2 = Azε2 +
1√
ε
[f(uε, vε) − f(u, ηεu)] , zε2(0) = 0 , (27)

respectively, and consider zε1 and zε2 separately. Theorem 1 defines η̄u. De-
note by νε1 be the probability measure of zε1 induced on the space C(0, T ;H).
For γ > 0 , denote by UCγ(H,R) the space of all functions from H to R
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which, together with all the order till to γ order Fréchet derivatives, are
uniformly continuous. For h ∈ UCγ(H,R), denote by h ′ and h ′′ the first
and second order Fréchet derivative. We have the following lemma by a
martingale approach [3] .

Lemma 4 Assume hypothesis (6). Any limiting measure of νε1 , denote
by P0, solves the following martingale problem on C(0, T ;H): P0{z1(0) =

0} = 1 ,

h(z1(t))−h(z1(0))−

∫ t
0

〈h ′(z1(θ)), ∂xxz1(θ)〉 dθ−
1

2

∫ t
0

tr
[
h ′′(z1(θ))B(u)

]
dθ

is a P0–martingale for any h ∈ UC2(H,R). Here

B(u) = 2

∫∞
0

E
[(
ηu(t) − η̄u

)
⊗ (ηu(0) − η̄u)

]
dt = σ22(I−A)−2Q22 (28)

with ⊗ being the tensor product.

Proof: For any 0 < s ≤ t <∞ and h ∈ UC∞(H,R) we have

h(zε1(t)) − h(zε1(s)) =

∫ t
s

〈h ′(zε1(θ)), ∂tzε1〉dτ

=

∫ t
s

〈h ′(zε1(θ)), ∂xxzε1(θ)〉dθ+
1√
ε

∫ t
s

〈h ′(zε1(θ)), ηεu(θ) − η̄u〉dθ .

Rewrite the second term on the right-hand of above equation as

L1 + L2 + L3 =
1√
ε

∫ t
s

〈h ′(zε1(t)), ηεu(θ) − η̄u〉dθ

−
1√
ε

∫ t
s

∫ t
θ

h ′′(zε1(δ))
(
ηεu(θ) − η̄u , Az

ε
1(δ)

)
dδdθ

−
1

ε

∫ t
s

∫ t
θ

h ′′(zε1(δ))
(
ηεu(θ) − η̄u , η

ε
u(δ) − η̄u

)
dδdθ ,
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where L1 , L2 and L3 denote the separate lines of the right-hand of the above
equation respectively. Denote by Σε(δ, θ) = (ηεu(θ) − η̄u) ⊗ (ηεu(δ) − η̄u).
Then

L3 = −
1

ε

∑
ij

∫ t
s

∫ t
θ

∂ijh(zε1(δ))〈Σε(δ, θ)ei, ej〉dδdθ (29)

= −
1

ε

∑
ij

∫ t
s

∫ t
θ

∫ t
δ

〈
∂ijh

′(zε1(λ)),
[
zε1(λ) +

1√
ε
(ηεu(λ) − η̄u)

]〉
× 〈Σ̃ε(δ, θ)ei, ej〉dλdδdθ

+
1

ε

∑
ij

∫ t
s

∫ t
τ

∂ijh(zε1(t))〈Σ̃ε(δ, τ)ei, ej〉dδdτ

+
1

ε

∑
ij

∫ t
s

∫ t
τ

∂ijh(zε1(δ))〈E[Σε(δ, τ)]ei, ej〉dδdτ (30)

where Σ̃ε(δ, θ) = Σε(δ, θ) − E[Σε(δ, θ)]. Here {ei}
∞
i=1 is one eigenbasis of H

and ∂ij = ∂ei∂ej with ∂ei is the directional derivative in direction ei . Now for
any bounded continuous function Φ on C(0, s;H), let Φ(·,ω) = Φ(zε1(·,ω)).
Denote by L31 , L32 and L32 the separate lines of the right-hand of (30) re-
spectively. Then by (8), |E[(L31 + L32)Φ]| → 0 as ε → 0 . As ηu(t) − η̄u
is stationary correlated and independent of u , by the exponential mixing
property, if εn → 0 as n→∞ , νεn → P0 ,

lim
n→∞ E[L3Φ] =

1

2

∫ t
s

EP0
(

tr
[
h ′′(z1(θ))B(u)

]
Φ
)
dθ ,

where B(u) is defined by (28) . Similarly by (8), E[L1Φ + L2Φ] → 0 as
ε → 0 . By the tightness of zε in C(0, T ;H), the sequence zεn1 has a limit
process, denoted by z1, in a weak sense. Then

lim
n→∞ E

[ ∫ t
s

〈h ′(zεn1 (θ)), Azεn1 (θ)〉Φdθ
]

= E
[ ∫ t
s

〈h ′(z1(θ)), Az1(θ)〉Φdθ
]
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and

lim
n→∞ E

[(
h(zεn1 (t)) − h(zεn1 (s))

)
Φ
]

= E
[(
h(z1(t)) − h(z1(s))

)
Φ
]
.

At last we have

EP0
[(
h(z1)(t) − h(z1(s))

)
Φ
]

= (31)

EP0
[ ∫ t
s

〈h ′(z1(θ)), Az1(θ)〉Φdθ
]

+
1

2
EP0
{∫ t

s

tr
[
h ′′(z1(θ))B(u)

]
Φdθ

}
.

By an approximation argument we can prove (31) holds for all h ∈ UC2(H).
This completes the proof. ♠

Denote by P0 the limit point of νε1 . Then by the relation between the
martingale problem and the weak solution of spdes [6] , P0 solves the mar-
tingale problem related to the following spde

dz1 = Az1 dt+
√
B(u)dW̄(t) . (32)

where B(u) is defined in Lemma 4 . Here W̄(t) is a cylindrical Wiener process,
with covariance operator being the identity operator on H, defined on a new
probability space (Ω̄, F̄ , P̄). Then by the uniqueness of the solution to (32),
zε1 converges in distribution to z1 in C(0, T ;H).

On the other hand, let z2 be one limit point of zε2 in C(0, T ;H). By
the assumption on f and (7) we derive that z2 is the unique solution of the
following equation

ż2 = Az2 + (1− 3u2)z , z2(0) = 0 (33)

with z = z1 + z2 . Then we have that zε uniquely converges in distribution
to z which solves (22) . This proves Theorem 3. ♠
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5 Numerical simulations

The numerical simulations plotted in Figures 1 and 2 employed standard
routines for integrating stochastic ordinary differential equations (sdes) [5].
The stochastic FitzHugh–Nagumo system (1)–(2) is discretised in space on
just nine spatial grid points using simple centred differences to approximate
spatial derivatives. Because of the dissipation of high wavenumber modes, no
significant difference was observed with a more refined grid. The spatial noise
was simply approximated by an independent white noise, Wiener process, at
each grid point for the vε equation (2). This spatial discretisation results in
a coupled system of 18 stochastic ordinary differential equations with forcing
by nine independent Wiener processes.

Analogous spatial discretisations modelled the stochastic deviation equa-
tion (22).

To integrate in time the spatially discretised systems, note that in both
the stochastic FitzHugh–Nagumo system and the stochastic deviation equa-
tion the forcing noise appears linearly. Thus the Itô and Stratonovich version
of a time integrator are identical. The time integration was performed with
a standard explicit, strong, first order method for sdes with multiple inde-
pendent noises, the method chosen from the book by Kloeden and Platen [5].
Because the sdes are sourced from spdes, the sdes are stiff and a small time
step of ∆t = 0.002 ensured stability. Since the simulations are to support a
proof of principle, we did not seek more efficient implicit methods. All sim-
ulations executed quickly in the freely available package Scilab 1 that also
drew Figures 1 and 2 .

1http://www.scilab.org

http://www.scilab.org
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6 Discussion

Usually an averaged model, such as (3), excludes fluctuations caused by the
fast component and is thus often not a good approximation. For example, as
in Figure 1, when the initial u0 = 0 the averaged model (3) predicts u = 0

and so misses the apparent stochastic fluctuations. However, the deviation
estimate, the solution of (1) with u0 = 0 is modelled appropriately by the
deviation

√
εz with z solving (22), as in Figure 1. Our result gives a better

model than the usual averaged equation. Furthermore, our approach shows
that the fluctuation is Gaussian.
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