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Application of rational Chebyshev polynomials
to optical problems
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Abstract

We present the use of the rational Chebyshev polynomials for dis-
cretising the transverse dimension(s) of beam propagation problems
within the field of nonlinear optics. How a beam propagates in an
optical medium, whether linear or nonlinear, is a common problem
and important in both theoretical studies and optical design. The in-
finite domain and convergence properties of these polynomials allows
one to handle the boundary conditions with greater correctness than
methods that impose periodic boundary conditions such as Fourier
methods. The beam is propagated forward by exponential integration
for fast and accurate numerical simulations. The techniques employed
to solve the beam propagation problems are easily applied to problems
in other fields with mathematically similar models.
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1 Introduction

Many problems in optics involve propagating a field forward in time/space
and simulating how it behaves in a nonlinear medium. Such problems often
have, at least in theory, boundary conditions at infinity. Traditionally, when
solving the underlying partial differential equation (pde) of the problem,
one discretises the transverse dimension(s) with finite differences or Fourier
modes and propagates the field using some kind of explicit or implicit time
integration scheme. The domain of the problem is necessarily truncated to a
suitably large size which allows the boundary conditions to be approximated.

The finite difference method is an easy to understand and easy to imple-
ment way of numerically handling derivatives in a pde. The resulting system
of linear equations involves a coefficient matrix which is typically sparse and
banded. Fast algorithms exist for solving such linear systems of equations.
However, to achieve high accuracy requires either a large number of points in
the transverse dimension(s) or increasingly complex finite difference schemes
which reduce the sparsity (and increase the number of bands) of the coeffi-
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cient matrix. A comparison of the accuracy between finite differences and
spectral methods of differentiation is in the book by Trefethen [1].

Using Fourier modes to discretise the transverse derivatives is a form of
spectral method. Therefore it has the advantage of high accuracy compared
to finite difference methods for a comparable number of points. Further, the
fact that differentiation becomes a simple matter of multiplication in Fourier
transform space and that there exists a number of freely available software
packages which perform the fast Fourier transform (fft) [2], has made the
Fourier method popular for solving propagation problems [3].

A consequence of using Fourier modes is that it imposes periodic bound-
ary conditions on the problem. If the problem involves propagating a lo-
calised structure, which is typical of many optical problems, then the peri-
odic boundary conditions effectively mean that an infinite chain of localised
beams are being propagated. Unless the computational domain is taken to
be sufficiently wide the tails of the beam ‘feels’ the presence of other pulses in
the chain and this affects the dynamics of the beam. In addition, any part of
the optical field which encounters one boundary, such as radiation shed from
the beam, will re-enter the computation domain from the opposite side and
interact with the beam. This is unphysical and to avoid it many schemes use
absorbing boundary conditions or perfectly matched layers have been devel-
oped [4]. Although successful, such techniques do increase the complexity of
any simulation code.

In order to maintain the accuracy of a spectral method but avoid the
imposition of periodic boundary conditions we apply in this work the so-
called rational Chebyshev polynomials (rcp) to the simulation of beams as
governed by the (1 + 1)-dimensional nonlinear Schrödinger equation (nls)
and its extension, the (1 + 1)-dimensional and (2 + 1)-dimensional cubic-
quintic nonlinear Schrödinger equation (cqnls). The rcp are transformed
versions of the standard Chebyshev polynomials which are defined on the
entire real line as opposed to [−1, 1].
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2 Rational Chebyshev polynomials

Chebyshev polynomials are a well known set of orthogonal polynomials and
have proved useful for numerical analysis. They are a popular choice of basis
set when employing spectral methods because Chebyshev polynomials can
be thought of as a “Fourier cosine series in disguise” [5] and as such allow
the use of existing fft software.

The rational Chebyshev polynomials (rcp) are a rescaling of the stan-
dard Chebyshev polynomials so that their domain is the entire real line [6].
Following Boyd [6], we define y ∈ (−∞, ∞), x ∈ [−1, 1], and t ∈ [0, π] then
the different domains are mapped onto one another through the relationships

y =
Lx√
1− x2

= L cot(t), x = cos(t),

where L > 0 is a constant which is chosen arbitrarily. The nth rational
Chebyshev is

TBn(y) = Tn

(
y√

L2 + y2

)
= cos

[
n arccot

(y
L

)]
,

where Tn(x) is the standard Chebyshev polynomial.

Small values of L cause the majority of the discretised points in the trans-
verse dimension to be clumped near the origin. Increasing L ‘pulls’ the points
out from the origin towards the boundary of the domain. The profile of the
beam one is investigating and the expected position of any interesting dy-
namics guides one’s choice for the value of L. We typically use L in the
range 4–20.

One now generates the rcp from either the standard Chebyshev polyno-
mials or from the Fourier series. Here we choose to work with Chebyshev
polynomials rather than Fourier series. This choice is merely one of personal
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convenience but we expect, for problems where a large number of rcp need
to be generated, that calculating those polynomials via a fft routine will
be quicker than using the recurrence relation that generates the standard
Chebyshev polynomials.

The transformations of derivatives are readily calculated by application
of the chain rule. We give only the first two derivatives but a comprehensive
table is presented in Boyd’s book [5]. If u is a function given as a series
of Tn(x), then

∂u

∂y
=

(
1− x2

)3/2
L

∂u

∂x
,

∂2u

∂y2
=

(
1− x2

)2
L2

{(
1− x2

) ∂2u
∂x2

− 3x
∂u

∂x

}
.

Given a stretching parameter, L, we use the standard differentiation ma-
trices to find the derivative of u in terms of Chebyshev polynomials [7] and
then use the above transformations to stretch the result to the real line.

The nature of the rcp means that they are well suited to both Dirichlet
and Neumann boundary conditions [5]. In the numerical simulations given
here nothing extra, beyond using the rcp, was done to take the boundary
conditions into consideration.

3 Exponential integrators

Many optical propagation problems are described by the general pde

∂u

∂t
= Lu+N (u) ,

where L is a linear differential operator (usually of second order) and N (u) is
an autonomous (although not necessarily) nonlinear operator.
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The use of the Chebyshev polynomials allows the discretization of the
linear operator L and turned the pde into a system ordinary differential
equations (ode). However, the discretised L is dense and the resulting ode
system is stiff. The higher order accuracy of the spectral method reduces the
amount of computation, despite the resulting dense matrix, as fewer points
will be needed to perform the computation to achieve a required accuracy.
The stiffness of the system is a more significant computational issue and
would normally require small steps in the propagation dimension or an im-
plicit time-stepping scheme in order to maintain accuracy. This counteracts
the benefits of the spectral scheme.

Here, we take advantage of the so-called exponential integrators (Minchev
and Wright [8] reviewed the subject), which have gained renewed interest in
recent years. The basic idea is to use the function exp (−Lt) as an integrating
factor for the pde. Then one integrates from 0 to ∆t where ∆t is the forward
time-step size. The resulting expression is formally exact and the role of
different exponential integration schemes is to approximate the integral in
the propagation rule

uj+1 = e∆tLuj + e
∆tL
∫∆t
0

e−τLN (uj(tj + τ))dτ ,

where the subscript j indicates the jth step. We employed the schemes devel-
oped by Krogstad [9] and Kassam & Trefethen [10]. Both schemes resemble
the classic Runge–Kutta schemes for solving non-stiff odes but rely on the
efficient computation of the so-called φ-functions

φ0(z) = ez, φj+1(z) =
φj(z) − 1/j!

z
,

where the argument of φj is, in the case of the rcp, a dense matrix. The
calculation of φj is only required once at the start of the simulation.

Calculating a given φj is computationally difficult due to the need to find
the matrix exponential and the possibility of a catastrophic cancellation [11].
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Cox and Matthews [11] suggest using a Taylor series expansion forφ0(z) when
z is small but there is a range of values where neither the Taylor series nor
the exact expression for φ0(z) are numerically accurate enough. Kassam and
Trefethen [10] suggest a complex contour integral technique to calculate φ0(z)
which is successful but the contour of the integral is arbitrary and may need
some trial and error to find. Here the squaring and scaling technique has
been used for matrix exponentials and high order Padé approximations have
been used for the φj(z) [12].

4 Results

For the purposes of testing we solve numerically the (1+1)-dimensional nls,
(1+1)-dimensional and (2+1)-dimensional cqnls. The (2+1)-dimensional
cqnls is

i
∂u

∂t
+
∂2u

∂x2
+
∂2u

∂y2
+
(
|u|2 − |u|4

)
u = 0 ,

and if the quintic nonlinearity and one of the transverse derivatives are
dropped we have the nls. The benefits of using these pdes, apart from
the fact they are commonly used to model optical propagation, is that the
one dimensional versions have well known soliton solutions and all have con-
served qualities which are used to monitor the scheme’s accuracy.

The scheme successfully handled propagating both bright and dark soliton
solutions in the one dimensional nls and cqnls. Bright and dark solitons
require Dirichlet and Neumann boundary conditions respectively. Using the
well known breather soliton of the nls [13, pg. 69], which has the simple
form of u = 2 sechy at t = 0 , we compared the rcp method with the
split-step Fourier method. Figure 1 shows the beam profiles according to
each method at t = 20 . The rcp method is indistinguishable from the exact
solution while the Fourier method has shed energy as radiation and the beam
is beginning to move to the left. For both methods the number of transverse
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Figure 1: The rcp method (thin line) and the standard split-step Fourier
method (thick line) are compared to the exact breather soliton (dashed line)
of the nls at t = 20 . Both methods use 32 points in the transverse dimension
(width 20 units) and have a time-step of 0.01. At this scale the rcp method
is indistinguishable from the exact solution.
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Figure 2: The collision of two dark solitons of the nonlinear Schrödinger
equation.

points is 32 and the time-step is 0.01. Using the same initial condition we
integrated the nls with the rcp method until t = 100 . Again, the profile is
indistinguishable from the exact solution. For the Fourier method to produce
a beam profile replicating the exact solution it requires 512 points in the
transverse dimension and at least an order of magnitude smaller time-step.
To avoid the possibility of the onset of high frequency instability inherent to
the split step method [3] the time-step had to be reduced to 4× 10−4.

Figure 2 shows two dark solitons colliding, interacting nonlinearly, and
then passing through each other as if unaffected. The initial profile used for
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Figure 3: The beam intensity of an initial Gaussian beam propagated ac-
cording to the (2+ 1)-dimensional cubic-quintic nonlinear Schrödinger equa-
tion after 100 time units.

this simulation was given by an exact solution of the nls

u(y, t) =
(a3 − a1) cosh (µt) −

√
a1a3 cosh (2py) + iµ sinh (µt)

√
a3 cosh (µt) +

√
a1 cosh (2py)

eia3t,

where µ = 2
√
a1 (a3 − a1) and p =

√
a3 − a1 [13, p. 99]. For the simulation

we used a1 = 0.5 and a3 = 1 while we set t = −8 in the expression above so
the collision occurs during the simulation. The numerical scheme successfully
reproduced the dynamical behaviour of the exact solution.

The (2+1)-dimensional cqnls is not integrable so exact soliton solutions
are not known although good approximations are made using variational
calculus [13]. The non-integrable nature of the equation means that energy
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of the initial pulse will be shed as radiation as the pulse reshapes into the
soliton solution of the cqnls. The scheme successfully handles the radiation.
Figure 3 shows the result of propagating a Gaussian initial beam for 100 time
steps during which time it reshapes.

As an application outside the field of optics we considered the Fisher–
Kolmogorov equation [14]

∂u

∂t
=
∂2u

∂x2
+ u− u2, u(−∞, t) = 1 , u(∞, t) = 0 ,

which has non-homogeneous boundary conditions on the real line. The
Fisher–Kolmogorov equation has the same generic form that was presented
in Section 3.

The equation has travelling wave solutions and the theory states that al-
most any initial condition which satisfies the boundary condition will reshape
into a traveling wave solution with wave speed 2. Figure 4 presents several
‘snapshots’ of the traveling wave moving to the right.

The scheme can be improved by developing a method to optimally or
adaptively choose L the stretching parameter of the rcp. If L could be
chosen adaptively then the density of the discrete points in the transverse
dimension could be changed as a beam moved so that more points were
available to describe the beam profile where it is changing most. Further,
computing the φ-functions is essential for the exponential integrators so any
work that improves the calculation of φj improves the scheme overall.

5 Conclusion

We have demonstrated the use of coupling rcp with exponential integra-
tors to study beam propagation in optical situation. The method avoids the
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Figure 4: The solution of the Fisher–Kolmogorov equation with a tanh
initial condition (dashed line) quickly resolves into a traveling wave with
speed 2.
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common deficiencies that periodic boundary conditions impose while main-
taining the accuracy and speed of a spectral scheme. We have seen gains
of two orders of magnitude in the time step size and an order of magnitude
reduction in the number of points required in the transverse dimension when
compared to the more commonly used split-step Fourier methods.
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