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Abstract

We present an effective procedure for selecting the stepsize in the
binomial τ -leap method, which is an efficient technique for the discrete
simulation of biochemical reaction systems. We use the difference of
the propensity functions to approximate their derivatives, thus giving
a derivative-free implementation. We compare the difference between
the stepsizes obtained by existing procedures and the new procedure,
and compare their relative efficiencies when simulating biochemical
reaction systems. Numerical results indicate that the new procedure
is very efficient and robust. More importantly, this new procedure
is easy to implement and leads one step further towards a general
purpose computer program for the efficient simulation of stochastic
biochemical reaction systems.
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1 Introduction

Stochastic modelling of biological systems has become a very important re-
search field in system biology in recent years. Experimental and theoretical
studies show the importance of stochastic processes in genetic regulatory
networks and cellular processes. For biological systems involving molecules
of small populations, the stochastic simulation algorithm (ssa) derived by
Gillespie [4] is an essentially exact procedure for studying noise in biological
systems. However, the computational time of the ssa is often very large
when it is applied to simulate large scale biological systems. It is impera-
tive to design efficient numerical methods for simulating stochastic chemical
kinetics.

There are two significant approaches for reducing the computational time
of the ssa. The first approach is based on a new technique of Gillespie
through the use of leap methods with Poisson random variables [5]. In the
Poisson τ -leap method, a number of reactions are allowed to fire in a rela-
tively larger time interval rather than one single reaction firing in the next
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reaction time interval, as is the case of the ssa. Following the Poisson τ -leap
method, the midpoint τ -leap method [5], implicit τ -leap method [11], Pois-
son Runge–Kutta methods [2], and binomial τ -leap method [12] have been
designed in order to improve the accuracy and efficiency of the stochastic
simulation. In addition, an improved leap size selection procedure has been
proposed for determining the maximum leap size for a specified degree of
accuracy [6]. More sophisticated sampling techniques need to be developed
in this approach in order to avoid obtaining negative molecular numbers in
the application of the τ -leap methods.

The second approach is to partition a chemical reaction system into sub-
sets of slow and fast reactions and then to apply different simulation methods
to each subset. Rao and Arkin [10] demonstrated how to reduce computa-
tional time by applying the quasi-steady state assumption to the subset of
fast reactions. Haseltine and Rawlings [7] improved the computational effi-
ciency by approximating fast reactions either deterministically or as Langevin
equations. Burrage et al. [3] partitioned chemical reaction systems into three
subsets of slow, intermediate and fast reactions and used the Poisson τ -
leap method to simulate the subset of intermediate reactions. In addition,
Puchalka and Kierzek [9] studied the maximal time step method that is a
combination of the ssa in Gibson and Bruck’s form and the Poisson τ -leap
method. One of the challenging problems in this approach is the complexity
of the partitioning process that may erode potential efficiency gains.

The ultimate goal of our research in this field is to develop a general-
purpose computer program to simulate biochemical reaction systems based
on the binomial τ -leap method. To reach this target, this work will study the
procedure for selecting stepsizes in the τ -leap methods. Existing procedures
are based on the calculation of derivatives of the propensity functions. Here
we develop a simple procedure that is very efficient and easy to implement.
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2 Stochastic simulation algorithms

When applying stochastic simulation algorithms to simulate biochemical re-
action systems, a well stirred chemical reaction system contains N molecular
species {S1, . . . , SN} with number xi(t) of the species Si at time t. These
species of molecules chemically interact inside some fixed volume Ω at a
constant temperature through reaction channels {R1, . . . , RM}.

For each reaction channel Rj (j = 1, . . . ,M), we define a propensity
function aj(x) in a given state x = (x1(t), . . . , xN(t))> and use aj(x)dt to
represent the probability that one reaction Rj will fire somewhere inside Ω in
the infinitesimal time interval [t, t+dt). In addition, a state change vector νj

is defined to characterise reaction channelRj. The element νij of νj represents
the change in the number of species Si due to reaction Rj. The N × M
matrix ν with elements νij is called the stoichiometric matrix.

The ssa is a statistically exact procedure for generating the time and
index of the next occurring reaction in accordance with the current values
of the propensity functions. In the so-called direct method [4], we draw two
independent random numbers r1 and r2 from the uniform distribution in the
unit interval, and then take the time of the next reaction to be the current
time plus µ, where

µ =
1

a0(x)
ln

(
1

r1

)
,

and a0(x) =
∑M

k=1 ak(x) . The index of the next reaction is the value of j
that satisfies

j−1∑
k=1

ak(x) < r2a0(x) ≤
j∑

k=1

ak(x) .

Then the system is updated by x(t+ µ) = x(t) + νj .

In the Poisson τ -leap method there are a number of reactions firing in a
relatively larger time interval [t, t + τ). The reaction number of channel Rj
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firing in [t, t+τ) is a sample value from a Poisson random variable P (aj(x)τ)
with mean aj(x)τ . After generating a sample value for each reaction channel,
the system is updated by

x(t+ τ) = x(t) +
M∑

j=1

νjP (aj(x)τ). (1)

We leave the discussion for determining the leap size τ to the next section.

In the Poisson τ -leap method, state x(t) is used to approximate the states
of the system in the time interval [t, t+ τ). In order to improve the accuracy,
a predicted state at a point in [t, t+τ) is used to approximate the states of the
system. Similar to the midpoint Runge-Kutta method for solving ordinary
differential equations, a predicted state at the midpoint (t + τ/2) is defined
by

x̄ = x +

⌊
1

2
τ

M∑
j=1

aj(x)νj

⌋
, (2)

where bxc is the largest integer in x. In the Poisson midpoint τ -leap method [5],
sample values are generated from the Poisson random variable P (aj(x̄)τ) and
the system is updated by

x(t+ τ) = x(t) +
M∑

j=1

νjP (aj(x̄)τ). (3)

The Poisson τ -leap and midpoint τ -leap methods are special cases of the
following s-stage Poisson Runge–Kutta methods [2], defined by

Yi = x(t) +
M∑

k=1

νkP

(
s∑

j=1

wijak(Yj)τ

)
, i = 1, . . . , s ,

x(t+ τ) = x(t) +
M∑

k=1

νkP

(
s∑

j=1

βjak(Yj)τ

)
, (4)
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where Yi represent internal approximations to the solutions between t and
t+τ , wij and βi are method parameters which can be chosen to achieve good
accuracy and stability properties. In addition, the Heun and R2 methods
have been studied [2].

When applying the Poisson τ -leap methods to stochastic chemical kinet-
ics, negative molecular numbers may be obtained if certain species have small
molecular numbers and the stepsize is not very small. The main reason for
this is that the range of sample values of a Poisson random variable is from
zero to infinity, but the numbers of molecules are finite. The reaction num-
ber of each channel, generated from Poisson random variables, should not
exceed the numbers of molecules that are involved in this reaction channel.
For tackling the problem of negative numbers of molecules, we have intro-
duced binomial random variables to restrict the possible reaction numbers
in the next time interval [12]. A binomial random variable B(N, p) denotes
N repeated independent Bernoulli trials and each trial has probability of
success p. The finite range of sample values of binomial random variable
allows us to properly bound the reaction numbers in order to avoid negative
populations.

In the binomial τ -leap method [12], the reaction number of channel Rj

is a binomial random variable B(Nj, bj(x)τ) under the stepsize condition
0 ≤ bj(x)τ ≤ 1 . Tian and Burrage [12] also proposed a sampling technique
for the simultaneous occurrence of different reaction channels if a reactant
species undergoes two or more reaction channels. Then in the binomial τ -leap
method, we choose a stepsize τ satisfying the Leap Condition and stepsize
condition for each reaction channel; generate a sample value for each channel
from the binomial random variable B(Nj, bj(x)τ); apply the sampling tech-
nique for the reaction channels if there are reactant species undergoing two
or more reaction channels; and finally update the system by

x(t+ τ) = x(t) +
M∑

j=1

νjB(Nj, bj(x)τ) . (5)



3 Stepsize selection procedures C1028

In addition, the binomial midpoint τ -leap method has been proposed [12].
Numerical results for three test systems indicated that the binomial τ -leap
method has very good accuracy and has achieved significant improvement of
efficiency over existing approaches [12].

3 Stepsize selection procedures

The starting point of the stepsize selection procedures is the Leap Condition
proposed by Gillespie [5]

∆aj(τ,x)
∆
= |aj(x + λ)− aj(x)| ≤ εa0(x) , j = 1, . . . ,M , (6)

where ε is a prespecified error control parameter (0 < ε� 1), and x + λ is a
predicted state at t+ τ computed by using the Poisson τ -leap method. The
net change in state in [t, t+ τ) is

λi =
M∑

k=1

νikP (ak(x)τ) , i = 1, . . . , N . (7)

Based on the mean and standard variance of the random variable ∆aj(τ,x),
Gillespie and Petzold [6] proposed an improved leap size selection procedure:

τ = min {τ1, τ2} , (8)

where

τ1 = min
j∈[1,M ]

{
εa0(x)

|µj(x)|

}
,

τ2 = min
j∈[1,M ]

{
ε2a2

0(x)

σ2
j (x)

}
,

fji(x) =
N∑

k=1

∂aj(x)

∂xk

νki , j, i = 1, . . . ,M ,
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µj(x) =
M∑

k=1

fjk(x)ak(x) , j = 1, . . . ,M ,

σ2
j (x) =

M∑
k=1

f 2
jk(x)ak(x) , j = 1, . . . ,M .

By defining a derivative matrix F = (Fji)M×N =
(

∂aj(x)

∂xi

)
M×N

, we have

f = (fji)M×M = F × ν . (9)

As all the three matrices F , f and ν are sparse, the computational time
will decrease dramatically using sparse data structures. Thus one approach
is to write a detailed program for a specific reaction system by considering
the sparse structure of these three matrices, and an alternative approach
is to design a general-purpose computer program by using sparse matrix
multiplication techniques [1]. The first approach has been used in stochastic
simulations although it is not recommended. Additional difficulties will arise
with this approach if we modify the system by adding or deleting a few
reactions. For the second approach, some care is needed when handling
sparse data structures.

This work designs a simple stepsize selection procedure that is an ap-
proximation to (8). The main idea is to use the difference of the propensity
functions to approximate their derivatives. We first consider the mean of the
net change in state in [t, t+ τ) (7):

λ̄i(τ) = τ
M∑

k=1

νikak(x) , i = 1, . . . , N . (10)

The first order Taylor expansion of the increment of the propensity function
is

aj(x + λ̄(τ))− aj(x) ≈
N∑

i=1

∂aj

∂xi

λ̄i(τ) = τ

N∑
i=1

∂aj

∂xi

M∑
k=1

νikak(x) = τµj(x).
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For a prespecified stepsize τ0, we estimate µj(x) simply by

µ̄j(x) =
aj(x + λ̄(τ0))− aj(x)

τ0

. (11)

This procedure is simpler than the existing procedures that are based on the
calculation of partial derivatives of the propensity functions.

As to the stepsize that is based on the variance, we first give the detailed
formula of σ2

j (x) for the three types of elementary reactions.

1. The first order reaction: Si
cj−→ S

aj(x) = cjxi , σ2
j (x) = c2

j

M∑
l=1

ν2
ilal(x)τ ,

where cj is the reaction rate of the jth reaction channel Rj.

2. The second order reaction: Si + Sk
cj−→ S

aj(x) = cjxixk , σ2
j (x) = c2

j

M∑
l=1

(xkνil + xiνkl)
2al(x)τ .

3. The homodimer formation: Si + Si
cj−→ S

aj(x) =
1

2
cjxi(xi − 1) , σ2

j (x) = c2
j

M∑
l=1

(xi −
1

2
)2ν2

ilal(x)τ .

In order to estimate the value of σ2
j (x), we consider the prediction

λ̂i(τ0) = τ0

M∑
l=1

ν2
ilal(x) , i = 1, . . . , N , (12)
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where τ0 is a prespecified stepsize. Then σ2
j (x) is approximated by

σ̄2
j (x) =

cjX̄j|aj(x + λ̂(τ0))− aj(x)|
τ0

, j = 1, . . . ,M , (13)

where

X̄j =


1 , a first order reaction,
max{xi, xk} , a second order reaction,
xi , a homodimer formation.

(14)

Using the first order Taylor expansion of aj(x + λ̂(τ0)) , the value of σ̄2
j (x) is

σ̄2
j (x) =


c2
j

∑M
l=1 ν

2
ilal(x)τ , a first order reaction,

c2
j

∑M
l=1 X̄j(xkν

2
il + xiν

2
kl)al(x)τ , a second order reaction,

c2
j

∑M
l=1(xi − 1

2
)xiν

2
ilal(x)τ , a homodimer formation.

Thus σ2
j (x) and σ̄2

j (x) are equal for a first order reaction. For the homodimer
formation, σ̄2

j (x) is slightly larger than σ2
j (x), but these two values are differ-

ent in the case of a second order reaction. If either νil or νkl is zero, the value
of σ̄2

j (x) is slightly larger than σ2
j (x), and since the stoichiometric matrix

is sparse, the difference in the values of σ̄2
j (x) and σ2

j (x) should be small.
Numerical results in Section 4 indicates that the impact of this difference is
negligible on the determination of the stepsizes.

Finally, we propose the following leap size selection procedure.

1. Based on the state x at time t and a prespecified stepsize τ0, make the
predictions by using (10) and (12).

2. Calculate the values of the propensity functions based on the predicted
states x + λ̄(τ0) and x + λ̂(τ0) , and estimate µj(x) and σ2

j (x) by us-
ing (11) and (13), respectively.

3. Choose the leap size as

τ = min {τ̄1, τ̄2} , (15)
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where

τ̄1 = min
j∈[1,M ]

{
εa0(x)

|µ̄j(x)|

}
, τ̄2 = min

j∈[1,M ]

{
ε2a2

0(x)

σ̄2
j (x)

}
.

Sparse matrix techniques have been applied to the multiplication of the
sparse stoichiometric matrix ν and the vector of propensity functions a(x) in
the above procedure and at the stage of updating the system (5). We used the
old Yale sparse matrix format to represent the stoichiometric matrix using
three vectors [1]. In the row format, all the non-zero elements are stored in
a vector M . The column indices of M are stored in the Jν vector and a
vector Iν is for the row indices of the stoichiometric matrix. The length of
row i is determined by Iν(i + 1) − Iν(i). A similar approach is to use the
column format for the multiplication of two matrices F and ν in (9).

4 Simulation results

The first test system contains three reactant species and four reaction chan-
nels, defined by

R1 : S1
c1−→ () ,

R2 : S1 + S1
c2−→ S2 ,

R3 : S2
c3−→ S1 + S1 ,

R4 : S2
c4−→ S3 ,

(16)

with reaction rates c = (0.1, 0.002, 0.5, 0.04)> and initial conditions x(0) =
(104, 0, 0)>.

This test system is used to compare the stepsizes obtained by the two
stepsize selection procedures (8) and (15). The binomial τ -leap method was
used to simulate this system with different prespecified error control parame-
ters ε. At each step we use the improved selection procedure (8) to determine
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the leap size for simulation. At the same time, we calculate the leap size by
using the proposed selection procedure (15) and measure the difference of
stepsizes by D(τ1) = τ1 − τ̄1 , D(τ2) = τ2 − τ̄2 and D(τ) = τ − τ̄ .

Figure 1 gives the stepsizes and the difference of stepsizes with three
prespecified error control parameter ε = 0.05 (A and D), 0.03 (B and E) and
0.01 (C and F), respectively. For each value of the error control parameter ε,
τ̄1 always gives a very good approximation to τ1. On the other hand, τ2 is
always larger than τ̄2. The reason for this is that τ2 is mainly determined
by the homodimer formation in this system, and the value of σ̄2

j is greater
than that of σ2

j for this reaction. Our simulation experience indicates that
ε = 0.03 or preferably ε = 0.01 should be used in the binomial τ -leap method
in order to achieve good accuracy. For these two values of ε, τ̄2 gives a
very good approximation to τ2. In addition, there are large variations in the
values of τ1 but the values of τ2 are relatively stable, which is consistent with
observations [6]. Furthermore, results in Figures 1 and 2 indicate that the
difference of stepsize D(τ) is between D(τ1) and D(τ2) and is mainly equal
to D(τ2) when ε = 0.01 .

We also tested the influence of the prespecified stepsize τ0 on the accuracy
of the estimated stepsizes τ̄1 and τ̄2. A large prespecified stepsize τ0 causes
relative large errors in the estimated stepsizes. However, a small prespecified
stepsize τ0 does not guarantee good estimation because of round-off errors in
the computation. In this work we choose τ0 = 0.01 in all simulations.

The next system describes the expression of LacZ and LacY genes and
activity of LacZ and LacY proteins in E. coli. A detailed description of
this system [8, 12] has 22 reactions and 23 chemical species. As the ssa
is frequently used at the initial stage of each simulation, we simulated this
system in the time interval [300, 800], and use the ssa to obtain a state of
the system at t = 300 that is used as the initial conditions of our simulations.

This system is used to compare the efficiency of the two procedures for
determining stepsizes. As discussed in Section 3, sparse matrix techniques
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Figure 1: The difference of stepsizes D(τ1) (solid line) and D(τ2) (dash-line)
in A, B and C, and the values of stepsizes τ1 (solid line) and τ2 (dash-line)
in D, E and F.
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Figure 2: The difference of stepsizes D(τ) for ε = 0.05 (A), ε = 0.03 (B)
and ε = 0.01 (C).

were used in the new procedure. We also considered the application of the
sparse matrix techniques to the improved selection process (8). The following
three schemes were employed in all the simulations.

1. Scheme 1 is based on the improved procedure (8) by using the sparse
structure of the stoichiometric matrix ν in the computation of fji and
in updating system (5).

2. Scheme 2 is also based on the improved procedure (8). Sparse ma-
trix techniques are used in the computation of fji, µj and σ2

j , and in
updating the system.

3. Scheme 3 is based on the new procedure (15). The sparse structure
of the stoichiometric matrix is considered in the prediction steps (10)
and (12), and in updating the system.

For schemes 1 and 2, we implemented a subroutine based on the ana-
lytic derivatives of propensity functions for simplicity. Instead of writing a
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complicated program using the sparse matrix multiplication package [1], we
used a carefully designed subroutine based on the ideas in that article for
the computation of fji, µj and σ2

j by using the sparse structure of the three
matrices f , F and ν. Thus Scheme 2 is an ideal program for achieving max-
imal computational efficiency. Schemes 1 and 2 are at opposite ends of the
efficiency spectrum, and any scheme that employs sparse matrix techniques
as part of the computation [12, e.g.], will achieve an efficiency that is between
those of schemes 1 and 2.

Table 1 gives the mean computational time of these three schemes over
100 simulations. Scheme 1 takes about four times the computing time of
schemes 2 and 3. These times indicate that the existing leap size selection
procedure in an improper implementation may take the majority of the total
computing time, and the development of the stepsize selection procedure is
an important issue in improving the efficiency of the τ -leap methods. The
computing time of Scheme 3 is slightly larger than that of Scheme 2. The
newly developed procedure can approach the maximal efficiency of the exist-
ing procedure and is easy to implement. Note that this maximal efficiency
of the existing process is achieved by a handwritten program that is based
on sparse matrix techniques and analytic derivatives of the propensity func-
tions. Similar to the results for the first test system, the averaged numbers
of steps in one simulation are very close to each other for these two leap size
selection procedures. The difference in the averaged numbers of steps is less
than 0.1% of the total number of steps. The numbers of steps of Scheme 2
are the same as those of Scheme 1 and thus are not listed in Table 1.

5 Conclusion

We studied procedures for determining stepsizes in the τ -leap methods. The
main idea is to use the difference of propensity functions to approximate
their derivatives. With two properly predicted states of the system, the
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Table 1: Computing time (in seconds) and averaged numbers of steps for
one simulation of the second system.

Computing time Number of steps
Scheme 1 Scheme 2 Scheme 3 Scheme 1 Scheme 3

ε = 0.05 95.50 24.55 24.78 302970 302685
ε = 0.04 99.68 25.59 25.77 316434 316351
ε = 0.03 122.80 31.11 31.49 390825 391752
ε = 0.02 238.56 60.33 60.30 762169 765788
ε = 0.01 949.46 235.67 237.73 3055686 3051056

stepsizes obtained by the proposed procedure give very good approximations
to those obtained by current procedures. The new procedure can approach
the maximal efficiency achieved by a handwritten program based on sparse
matrix techniques and analytic derivatives of the propensity functions. More
importantly, this newly developed procedure is easy to implement in a general
purpose computer program. Furthermore, we expect that as the chemical
systems become larger, the savings in computational time observed for the
E. coli model will become even more pronounced. Future work will focus on
the development of sampling techniques in the binomial τ -leap method for
simulating large-scale biochemical reaction systems.
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