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Abstract

We consider a time and space-symmetric fractional diffusion equa-
tion (tss-fde) under homogeneous Dirichlet conditions and homoge-
neous Neumann conditions. The tss-fde is obtained from the stan-
dard diffusion equation by replacing the first-order time derivative by
a Caputo fractional derivative, and the second order space derivative
by a symmetric fractional derivative. First, a method of separating
variables expresses the analytical solution of the tss-fde in terms of
the Mittag–Leffler function. Second, we propose two numerical meth-
ods to approximate the Caputo time fractional derivative: the finite
difference method; and the Laplace transform method. The symmet-
ric space fractional derivative is approximated using the matrix trans-
form method. Finally, numerical results demonstrate the effectiveness
of the numerical methods and to confirm the theoretical claims.
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1 Introduction

A growing number of works in science and engineering deal with dynami-
cal systems described by fractional order equations that involve derivatives
and integrals of non-integer order [1, 3, 6, 16]. These new models are more
adequate than the previously used integer order models, because fractional
order derivatives and integrals describe the memory and hereditary prop-
erties of different substances [12]. This is the most significant advantage
of the fractional order models in comparison with integer order models, in
which such effects are neglected. In the context of flow in porous media,
fractional space derivatives model large motions through highly conductive
layers or fractures, while fractional time derivatives describe particles that
remain motionless for extended periods of time [7].

In this article, we consider the following time and space-symmetric fractional
diffusion equation (tss-fde):

tD
α
∗u(x, t) = −Kβ(−∆)β/2u(x, t) , 0 ≤ t ≤ T , 0 ≤ x ≤ L , (1)
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subject to either homogeneous Dirichlet boundary conditions, or homoge-
neous Neumann boundary conditions

u(0, t) = u(L, t) = 0 , or
∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0 , (2)

and the initial condition

u(x, 0) = g(x) , (3)

where u(x, t) is a solute concentration field and Kβ represents the dispersion
coefficient. The operator tD

α
∗ is the Caputo time fractional derivative of

order α (0 < α < 1), with starting point at t = 0 , defined as [12]

tD
α
∗u(x, t) =

1

Γ(1− α)

∫ t
0

∂u(x, η)

∂η

dη

(t− η)α
. (4)

The symmetric space fractional derivative −(−∆)β/2 of order β (1 < β ≤ 2)
is defined by Gorenflo and Mainardi [2], where ∆ is the Laplacian operator.

Physical considerations of a fractional diffusion equation restrict 0 < α <

1 and 1 < β ≤ 2 , and we assume Kβ > 0 so that the flow is from left
to right. The physical meaning of using homogeneous Dirichlet boundary
conditions is that the boundary is set far enough away from an evolving
plume such that no significant concentrations reach that boundary [9, 10].
Also, by assuming homogeneous Dirichlet boundary conditions, we derive
that the Riesz fractional derivative is equivalent to the fractional power of
Laplacian operator [14], that is, ∂βu(x, t)/∂|x|β = −(−∆)β/2u(x, t). The
physical meaning of using homogeneous Neumann boundary conditions is
that the tracer moves freely through the boundaries [11].

In the case of α = 1 and β = 2 , the tss-fde (1) reduces to the classical
diffusion equation. For 0 < α < 1 and β = 2 , the tss-fde (1) models
subdiffusion due to particles having heavy tailed resting times, whereas for
α = 1 and 1 < β < 2 the tss-fde (1) corresponds to the Lévy process [16].
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Hence, the solution of tss-fde (1) is important for describing the competi-
tion between these two anomalous diffusion processes. The tss-fde was first
introduced by Zaslavsky [15] to model Hamiltonian chaos. More recently, an
important application of tss-fde arose in finance [8], where coupled continu-
ous time random walk (ctrw) models were used to describe the movement of
log-prices. In these coupled ctrw models, the probability density functions
for the limiting stochastic process solve tss-fde.

2 Analytical solutions

In this section, using the method of separation of variables, the analyti-
cal solution of tss-fde (1)–(3) is first derived under homogeneous Dirich-
let boundary conditions. For homogeneous Neumann conditions, a similar
method can be used to derive the analytical solution.

Setting u(x, t) = X(x)T(t) and substituting into (1) yields

tD
α
∗X(x)T(t) + Kβ(−∆)β/2X(x)T(t) = 0 .

Letting −ω be the separation constant we obtain two fractional ordinary
linear differential equations for X(x) and T(t), respectively as

(−∆)β/2X(x) −ωX(x) = 0 , (5)

tD
α
∗ T(t) + KβωT(t) = 0 . (6)

Following Ilić et al.’s [4] definition of the fractional Laplacian (−∆)β/2 defined
on a bounded region, (5) is expressed as

∞∑
n=1

cn(λ
2
n)
β/2xn +ωn

∞∑
n=1

cnxn = 0 . (7)

Hence, under homogeneous Dirichlet conditions, the eigenvalues of (5) are
ωn = λβn = (nπ/L)β for n = 1, 2, . . . , and the corresponding eigenfunctions
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are nonzero constant multiples of xn = sin(nπx/L). For homogeneous Neu-
mann conditions, the eigenvalues are ωn = λβn = (nπ/L)β for n = 0, 1, 2, . . . ,
and the corresponding eigenfunctions are xn = cos(nπx/L).

Next, we seek a solution of the tss-fde (1) under homogeneous Dirichlet
conditions in the form

u(x, t) =

∞∑
n=1

Tn(t) sin
(nπx
L

)
. (8)

Substituting (8) into (1) yields

tD
α
∗ Tn(t) = −KβωnTn(t) . (9)

Since u(x, t) must also satisfy the initial conditions (3)

∞∑
n=1

Tn(0) sin
(nπx
L

)
= g(x) , 0 ≤ x ≤ L , (10)

and therefore

Tn(0) =
2

L

∫L
0

g(x) sin
(nπx
L

)
dx , n = 1, 2, . . . . (11)

For each value of n, (9) and (11) compose a fractional initial value problem.
Applying the Laplace transform to (9), we obtain

T̃n(s) =
sα−1Tn(0)

sα + Kβωn
. (12)

By using the known inverse Laplace transform [13]

Eα(−ωt
α) = L−1

{
sα−1

sα +ω

}
, <(s) > |ω|1/α , (13)
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we obtain the analytical solution of tss-fde (1) under homogeneous Dirichlet
conditions as

u(x, t) =

∞∑
n=1

Tn(t) sin
(nπx
L

)
=

∞∑
n=1

Eα(−Kβωnt
α)Tn(0) sin

(nπx
L

)
, (14)

where Tn(0) is given in (11), and Eα(z) is the Mittag–Leffler function [12]

Eα(z) =

∞∑
n=0

zn

Γ(an+ 1)
, α > 0 . (15)

Here, when α = 1 , the solution (14) corresponds precisely with the results
derived for the Riesz space fractional diffusion equation [14].

Similarly, the analytical solution of tss-fde (1) under homogeneous Neu-
mann conditions is

u(x, t) =

∞∑
n=0

Tn(t) cos
(nπx
L

)
=
1

2
T0(0) +

∞∑
n=1

Eα(−Kβωnt
α)Tn(0) cos

(nπx
L

)
, (16)

where Tn(0) = (2/L)
∫L
0
g(x) cos(nπx/L)dx , n = 0, 1, 2, . . . , and we have

used the result that Eα(0) = 1 .

3 Numerical methods

In this section, we present two numerical schemes to simulate the solution
behaviour of tss-fde (1)–(3). In Section 3.1, a finite difference method
(fdm) and the matrix transform method (mtm) are used to discretize the
Caputo time fractional derivative and the symmetric space fractional deriva-
tive, respectively. In Section 3.2, using the Laplace transform method (ltm)
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together with the mtm, we transfer the tss-fde (1) into a discrete system
describing the evolution of u(x, t) in space and time.

Using time stepping methods in the fractional case requires the storage of all
previous time steps. The difficulty in solving fractional differential equations,
particularly where the application area requires a solution to be given over a
long time interval, is essentially because fractional derivatives are non-local
operators. The so-called non-local property means that the next state of
a system not only depends on its current state, but also on the historical
states starting from the initial time. This property is closer to reality and is
the main reason why fractional Calculus has become more and more useful.
To overcome this difficulty, some researchers explore techniques for reducing
computational cost that keeps the error under control. The simplest approach
is to disregard the tail of the integral and to integrate only over a fixed
period of recent history. This is commonly referred to as the ’short-memory’
principle, and is described by Podlubny [12]. Here, we only consider the full
memory case.

3.1 Finite difference method with matrix transform
method

Let xl := lh , l = 0, 1, . . . ,M , where h := L/M is the space step; tn :=

nτ , n = 0, 1, . . . ,N , where τ := T/N is the time step; and unl denote the
numerical approximation of u(xl, tn). Adopting the fdm given by Lin &
Xu [5], we discretize the Caputo time fractional derivative as

tD
α
∗u

n+1
l =

τ−α

Γ(2− α)

n∑
j=0

bj

[
u
n+1−j
l − un−j

l

]
+O(τ2−α) , (17)

written in matrix form

tD
α
∗Un+1 =

1

µ0

n∑
j=0

bj
[
Un+1−j − Un−j

]
+ O(τ2−α) , (18)



3 Numerical methods C807

where µ0 = ταΓ(2 − α), bj = (j + 1)1−α − j1−α, j = 0, 1, 2, . . . , n . Utilising
the theory described by Ilić et al. [4], we find a matrix representative for the
fractional Laplacian operator

− (−∆)β/2U ≈ −
1

hβ
Aβ/2U , (19)

where A = tridiag(−1, 2,−1) ∈ R(M−1)×(M−1) under homogeneous Dirichlet
conditions, or

A =


1 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

−1 1


(M+1)×(M+1)

under homogeneous Neumann conditions. Since the matrix A is symmetric
positive definite (spd), there exits a nonsingular matrix P that orthogonally
diagonalises A as

A = PΛPT , (20)

where Λ = diag(λ1, λ2, . . . , λM−1) under homogeneous Dirichlet conditions or
Λ = diag(λ0, λ1, . . . , λM) under homogeneous Neumann conditions, λi (i =

0, 1, 2, . . . ,M) being the eigenvalues of A. Thus, the fractional Laplacian
can be expressed in terms of its spectral decomposition as

−(−∆)β/2U ≈ −
1

hβ
PΛβ/2PTU . (21)

Now, combining (18) with (21), we obtain the following numerical difference
approximation of the tss-fde (1):

1

µ0

n∑
j=0

bj
[
Un+1−j − Un−j

]
= −ηβPΛ

β/2PTUn+1 , (22)
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where ηβ = Kβ/h
β. After simplification,

[
b0I + µ0ηβPΛ

β/2PT
]
Un+1 =

n−1∑
j=0

(bj − bj+1)U
n−j + bnU

0 , (23)

where U0 is the matrix representation of the initial value g(x).

3.2 Laplace transform method with matrix transform
method

We now consider an alternate strategy for approximating the fractional ode
system associated with the tss-fde (1), when the approximation for the
fractional Laplacian is given by (19):

tD
α
∗Un = −ηβA

β/2Un . (24)

Applying the Laplace transform to (24) with Ũn = L{Un(t)} yields

Ũn =
[
sI + s1−αηβA

β/2
]−1

U0 . (25)

Since A is spd and has the orthogonal diagonalisation (20), we obtain

Un = PL−1
{(
sI + s1−αηβΛ

β/2
)−1}

PTU0 . (26)

Recalling (13) and applying the inverse Laplace transform for each of the
eigenvalues, we obtain the second numerical scheme for approximating the
tss-fde (1) as

Un = PEα(−t
α
nηβΛ

β/2)PTU0 , (27)

where Eα(z) is the Mittag–Leffler function defined in (15).
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Figure 1: Comparison of the numerical solutions with the exact solution
at different times t = 0.1, 1.0, 5.0 for (a) the tss-fde (28)-(30), and (b) the
tss-fde (32)–(34), with α = 0.5 , β = 1.5 , M = 50 , N = 100 .

4 Numerical examples

In this section, we provide two examples of the tss-fde to assess the accuracy
of the two numerical schemes proposed in Section 3, and to illustrate the
solution behaviour that arises as we change from integer to fractional order
in time and space.

Example 1 Considering the following tss-fde with homogeneous Neu-
mann boundary conditions:

tD
α
∗u(x, t) = −(−∆)β/2u(x, t) , 0 ≤ t ≤ T , 0 ≤ x ≤ π , (28)

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0 , (29)

u(x, 0) = x2
(
3

2
π− x

)
. (30)
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Table 1: Maximum errors at t = 1 with fixed time step τ = 0.01 .
h ltm-mtm fdm-mtm
π/8 1.73e-02 1.98e-02
π/16 4.33e-03 7.05e-03
π/32 1.08e-03 4.00e-03
π/64 2.72e-04 3.28e-03

Table 2: Maximum errors at t = 1 with fixed space step h = π/50 .
τ ltm-mtm fdm-mtm

1/10 4.44e-04 3.43e-02
1/25 4.44e-04 1.31e-02
1/50 4.44e-04 6.60e-03
1/100 4.44e-04 3.44e-03

Following the solution method (16) derived in Section 2, the analytical solu-
tion of tss-fde (28)–(30) is

u(x, t) =
π3

4
+

∞∑
n=1

12[(−1)n − 1]

πn4
Eα(−n

βtα) cos(nx) . (31)

Figure 1(a) shows that both numerical solution schemes provide a good match
with the analytical solution (31) at different times t, with α = 0.5 , β = 1.5 ,
M = 50 , N = 100 .

Example 2 Consider the following tss-fde with homogeneous Dirichlet
boundary conditions:

tD
α
∗u(x, t) = −(−∆)β/2u(x, t) , 0 ≤ t ≤ T , 0 ≤ x ≤ π , (32)

u(0, t) = u(π, t) = 0 , (33)

u(x, 0) = x2(π− x) . (34)
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Figure 2: Numerical solutions at t = 1.0 for the tss-fde (32)–(34) with:
(a) 0 < α < 1 , β = 1.5 ; and (b) α = 0.5 , 1 < β ≤ 2 (b).

According to (14), the exact solution of tss-fde (32)–(34) is

u(x, t) =

∞∑
n=1

8(−1)n+1 − 4

n3
Eα(−n

βtα) sin(nx) . (35)

Figure 1(b) shows that both numerical solution schemes provide a good
match with the analytical solution (35) at different times t, with α = 0.5 ,
β = 1.5 , M = 50 , N = 100 . Furthermore, Tables 1 and 2, show that the
maximum errors are decreasing as the spatial and temporal nodes increase.
Especially, the ltm-mtm is more accurate than the fdm-mtm because it is
exact in time. The error observed in the tables for the ltm-mtm is only
associated with the spatial discretisation error. More rigorous analyses on
stability and convergence will be investigated in future work.

Figure 2(a) displays the solution profiles of the tss-fde (32)–(34) over space
for 0 < α < 1 , β = 1.5 at t = 1.0 . As α is increased over the inter-
val (0, 1) the solution profile diminishes in magnitude and becomes slightly
more skewed. The solution profiles for selected values of β with α = 0.5 at t =

1.0 are shown in Figure 2(b). The process featured with β = 1.2, 1.4, 1.6, 1.8
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is slightly more skewed to the right than that with β = 2.0 . Furthermore, the
solution continuously depends on the time and space fractional derivatives.

5 Conclusions

An analytical solution and two numerical schemes for approximating the tss-
fde were derived under both homogeneous Dirichlet and Neumann boundary
conditions. These solution techniques can be applied to other fractional
partial differential equations. In future research, we will report the stability
and convergence analyses of the proposed numerical methods.
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