
ANZIAM J. 60 (CTAC2018) pp.C127–C139, 2019 C127

Numerical methods for computing the
greatest common divisor of univariate

polynomials using floating point arithmetic

Markus Hegland1

(Received 27 February 2019; revised 11 July 2019)

Abstract

Computing the greatest common divisor (gcd) for two polynomials
in floating point arithmetic is computationally challenging and even
standard library software might return the result gcd = 1 even when
the polynomials have a nontrivial gcd. Here we review Euclid’s algo-
rithm and test a variant for a class of random polynomials. We find
that our variant of Euclid’s method often produces an acceptable result.
However, close monitoring of the norm of the vector of coefficients of
the intermediate polynomials is required.

doi:10.21914/anziamj.v60i0.14059 gives this article, c© Austral. Mathematical Soc.
2019. Published August 15, 2019, as part of the Proceedings of the 18th Biennial Compu-
tational Techniques and Applications Conference. issn 1445-8810. (Print two pages per
sheet of paper.) Copies of this article must not be made otherwise available on the internet;
instead link directly to the doi for this article.

http://dx.doi.org/10.21914/anziamj.v60i0.14059

Contents C128

Contents
1 Euclid’s algorithm C128

2 A modified Euclid algorithm C131

3 The Sylvester matrix C134

4 Experiments with stochastic polynomials C136

5 Outlook C138

1 Euclid’s algorithm

The computation of the greatest common divisor (gcd) of two polynomials is
an important problem and has received some attention. In algebraic geometry,
the gcd is the simplest example of a Groebner basis. Euclid’s algorithm is
widely used to compute the gcd using rational arithmetic or finite fields.
However, the algorithm may fail when used with floating point arithmetic due
to rounding errors. Further background is provided by Stetter [2], Corless
et al. [1] and Zeng [3], which contain comprehensive references to further
literature. In this literature the connection between Gaussian elimination
and Euclid’s method is well understood. In Section 2 we derive a matrix
factorisation which is based on elimination in the polynomial ring. To the
best of my knowledge, this approach is new.

In this section we review Euclid’s algorithm and its reliance on long division.
We also give an application to the computation of multiple zeros of polynomials
and several examples which demonstrate the performance in the floating point
context.

Definition 1 (gcd). A polynomial g is a greatest common divisor (gcd)
of two polynomials p and q if g is a polynomial with maximal degree which

1 Euclid’s algorithm C129

divides p and q.

Note that if g is a gcd of p and q then so is λg for any λ 6= 0 .

The main tool for both theory and computing of the gcd is Euclid’s algorithm.
To formulate our algorithms we use conventions of the Python module sympy
which provides a polynomial type (and class). In sympy the polynomials
are represented by an array of monomial coefficients. Euclid’s algorithm in
Python is stated concisely as follows.

def gcd (p , q) :
r = p % q
i f r == 0 : return q
else : return gcd (q , r)

At every recursive call gcd(p,q) the degree of the second argument is reduced.
The gcd divides the remainder p % q and if the remainder is zero, then p is
a multiple of q and thus q is a gcd and Euclid’s algorithm terminates. The
set of gcds forms a one-dimensional linear space of polynomials.

The computation of the gcd has many applications where the gcd is often
a component of a larger procedure. For example, in numerical analysis the
gcd is used to compute multiple zeros of a polynomial. A multiple zero x∗
is a number for which both p(x∗) as well as one or several derivatives are
zero. In this case the common Newton’s method for zeros shows very slow
convergence. However, one has the following the proposition due to Lagrange.

Proposition 2 (Lagrange). Let p(x) be a real polynomial of degree d with
m 6 d (distinct) zeros and derivative p′(x). Then there exists a real number γ
such that

p(x)

gcd(p(x),p′(x))
= γ

m∏
i=1

(x− xi) ,

where the xi are the (complex) zeros of p(x).

1 Euclid’s algorithm C130

Thus the zeros of p(x) are equal to the zeros of polynomial q = p/ gcd(p,p′) .
The attraction is that the polynomial q(x) has only simple zeros.

The Python code given above actually works reasonably well for polynomials
with rational and integer coefficients. However, trying to work with the
operator % in floating point leads to substantial problems. This is why we
break down the division of two polynomials into the more basic steps of long
division, and recast Euclid’s algorithm in terms of these steps. The long
division algorithm is as follows.

def div (p , q) :
s , r = 0 , p
while (r != 0) & (degree (r) >= degree (q)) :

t = LT(r)/LT(q)
s = s+t
r = r−t∗q

return s , r

Here, LT(p) denotes the leading (highest degree) monomial term of p.

We now consider some examples. All the computations were performed in
64 bit standard floating point arithmetic. The first example is to confirm
that the algorithm performs correctly for a simple case.
Example 3. Consider the two polynomials p(x) = 10x4 − 100x3 + 350x2 −
500x+ 240 and q(x) = 4x2 − 28x+ 40 . When running the above version of
Euclid’s algorithm one gets

gcd(p,q) = 80x− 160 ,

which is correct.
Example 4. Consider the two polynomials p(x) = 10s4x4−100s3x3+350s2x2−
500sx+240 and q(x) = 4s2x2−28sx+40 where s = 1+10−10 . The gcd(p,q)
should be a multiple of sx− 2 . Running our code gives gcd(p,q) = −4.263×
10−14 . If the gcd of two polynomials is a constant, then the two polynomials

2 A modified Euclid algorithm C131

have no common nontrivial gcd. Our algorithm failed because it was not
able to deal with the rounding error.
Example 5. Consider a polynomial p(x) and its derivative p′(x) where p(x) =
(x − 1)4(x − 2)4(x − 3)4(x − 4)4 . The gcd of p and p′ is a nontrivial
polynomial divisible by (x − 1)3(x − 2)3(x − 3)3(x − 4)3 . Our algorithm
returns gcd(p,p′) = −1.3460 which is clearly wrong.
Example 6. Choose p(x) = (x − X1)(x − X2) and q(x) = (x − X1)(x − X3)
where the Xi are chosen to be standard normally distributed random numbers.
Clearly the gcd is x− X1 with probability one, but often Euclid’s algorithm
returns a constant.

The above four examples demonstrate that Euclid’s algorithm for polynomials
using floating point arithmetic can produce wrong results. Note that when
rational (exact) arithmetic is used, then Euclid’s algorithm produces the
correct result. In order to get correct results with floating point arithmetic
one needs to consider rounding errors and use stable algorithms.

One way to model floating point errors is by small random perturbations and
thus defining the polynomials to have random coefficients. One can show that
the set of pairs of random polynomials with a nontrivial common divisor has
measure zero.

2 A modified Euclid algorithm

Here we combine long division with Euclid’s algorithm to generate a se-
quence pi of polynomials with non-increasing degree. We assume that the
degree of p is less than the degree of q. The sequence is initiated by p0 = p
and p1 = q and satisfies the recursion

pi+1 = tix
δipi − sipi−1 , (1)

where δi = di−1 − di and ti and si are such that di+1 < di−1 . If some pi is
equal to zero, then we choose all the following polynomials pi+k to be zero.

2 A modified Euclid algorithm C132

Here di denotes the degree of pi. Choices for the coefficients ti and si include
ti = 1 and si = lc(pi)/ lc(pi−1) where lc(pi) denotes the leading coefficient,
that is, the coefficient of the highest power xdi in pi. This leading coefficient
is nonzero unless the polynomial is zero. The choice used here is

ti =
lc(pi−1)

max(| lc(pi)|, | lc(pi−1)|)
, si =

lc(pi)
max(| lc(pi)|, | lc(pi−1)|)

, (2)

motivated by the partial pivoting approach in Gaussian elimination. The
polynomial pi+1 is an instance of an S-polynomial used for multivariate prob-
lems where one often uses ti = lc(pi−1) and si = lc(pi) . The normalisation
of ti and si controls the growth of the coefficients of the polynomial pi. Fur-
thermore, the choice of the coefficients ti and si guarantees that di+1 < di−1 .
As the degrees are integers one thus has

d2i 6 d0 − i and d2i+1 6 d1 − i . (3)

It follows that after 2d1 elimination steps one obtains a zero polynomial and
thus the algorithm terminates.

Now let the vector p = (p0,p1, . . . ,pn)T =
∑n

i=0 piei where ei is the ith stan-
dard basis vector in Rn+1. From the definition of pi in equation (1) and using
vector notation one then obtains (I is the identity matrix)

p = (I+tn−1x
δn−1ene

T
n−1−sn−1ene

T
n−2) · · · (I+t1xδ1e2eT1−s1e2eT0)(pe0+qe1) .

(4)
This formula is very similar to formulas occurring in Gaussian elimination,
except that now the matrices may contain powers of x. As for Gaussian
elimination, one now defines the lower triangular matrix Ln(x) with nonzero
components

li,j(x) =


1 if j = 1 ,
−ti−1 x

δi−1 if j = i− 1 ,
si−1 if j = i− 2 .

(5)

Then it follows that for all n,

pn(x) = e
T
nL

−1
n (x)e0 p(x) + e

T
nL

−1
n e1 q(x) , (6)

2 A modified Euclid algorithm C133

that is, one has pn(x) = an(x)p(x) + bn(x)q(x) , which proves that the poly-
nomials pn(x) are all in the ideal generated by p(x) and q(x) in a constructive
way. From equation (6) it then follows that pn(x) is a linear combination of
polynomials of the form xkp(x) and xjq(x). A careful inspection then shows
that for x = (1, x, x2, . . . , xn)T one has

p =MnSx , (7)

where S is the Sylvester matrix and Mn is a matrix which, like the Sylvester
matrix, does not contain any powers of x.

When using rational arithmetic the above algorithm computes the gcd of
p and q, which is equal to the polynomial pn for which pn+1 = 0 . When util-
ising the method with floating point arithmetic, rounding errors may provide
a substantial challenge. Euclid’s method is basically Gaussian elimination
with a somewhat predefined pivoting procedure. The computations may be
affected by errors in the input data p and q, which typically perturb the data
such that the gcd of the perturbed data is one. But even if there is still a
nontrivial gcd, the rounding errors in the Euclidean algorithm may destroy
any common divisors of the polynomials pn and thus also not produce a gcd.
We found that often monitoring the coefficient norm of the polyomials pn
indicates when a pn is an approximate gcd. This is the case when the norm
of the coefficients of pn+1 is small. Section 4 provides some examples to
illustrate the algorithm.

We retested Examples 3–6 with the new algorithm presented above and it
was able to compute the gcds in all cases. Especially for the gcd of p and
its derivative (Example 5), we observed behaviour similar to the random
polynomials discussed in Section 4.

3 The Sylvester matrix C134

3 The Sylvester matrix

Let the matrices S1 ∈ Rd2,d1+d2 and S2 ∈ Rd1,d1+d2 be two matrices which
satisfy x

d2−1

...
1

p(x) = S1
x

d1+d2−1

...
1

 , (8)

and similarly for S2. We then denote the Sylvester matrix as

S =

[
S1
S2

]
. (9)

Here d1 and d2 are the degrees of p and q, respectively. The blocks Si are
banded Toeplitz matrices.

Euclid’s algorithm is an elimination algorithm for the Sylvester matrix which
maintains the Toeplitz structure and eliminates whole diagonals at a time.
This elimination process is illustrated in the following diagram where zero
elements are not displayed and elements modified are denoted by ‘+’ while
the elements unchanged are denoted by ‘∗’. Consider the case d1 = 2 and
d2 = 4 for which one has

S =


∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 . (10)

The first four rows define the block S1 and the last two rows define S2. Both
blocks are Toeplitz, that is, constant along the diagonals. In the first step one
subtracts a multiple of the first row from row five in order to eliminate the
element s51—as in Gaussian elimination. In contrast to Gaussian elimination,
one then subracts the same multiple of the second row from the last row which

3 The Sylvester matrix C135

eliminates element s62. As both blocks are Toeplitz this does not require extra
work as the new last row is just a shifted version of the second last row. Now
the first row and column are no longer required and we just display the nonzero
structure of the reduced matrix S(1). This elimination step is then repeated
until only one row in the upper block remains, producing S(2) and S(3) in the
process. The same elimination process is then performed on the two blocks
of S(3). The whole process is repeated until no more eliminations are required.
This is just Euclid’s algorithm in matrix notation and for our example we
produced S(0) → S(1) → S(2) → S(3) → S(4) → S(5) → S(6) with the nonzero
structures

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

→

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

+ + ∗ ∗
+ + ∗ ∗

→

∗ ∗ ∗
∗ ∗ ∗

+ + ∗
+ + ∗



→
∗ ∗ ∗
+ +

+ +

→
+ +

+ +
∗ ∗ ∗

→ [
+ +
+ +

]→ [
+
]
. (11)

Here we have omitted the pivot row and column after each elimination step
as it is not required for computing the gcd. The matrix S(4) is obtained from
S(3) by moving the first row to the last position. This is consistent with the
standard version of Euclid’s algorithm. The matrices S(i) are all Sylvester
matrices related to the polynomials p(i) which occur in Euclid’s algorithm.
The algorithm terminates at step i when the matrix S(i) is zero. The gcd is
then retrieved from S(i−1).

A big advantage of the Sylvester matrix approach is that robust matrix
methods including Gaussian elimination with pivoting, qr factorisation with
column pivoting, svd and even parallel algorithms can be used to factorise
this matrix and reveal the gcd. However, these advantages have a substantial
computational overhead as the coefficients of p and q are stored multiple

4 Experiments with stochastic polynomials C136

times. The basic idea in Sylvester’s approach is to group the whole gcd
computation into one big matrix task. We are currently working on new
methods which groups computational tasks during Euclid’s algorithm into
several subtasks which can then be processed more efficiently and stably. A
first step is the formulation of the matrix-based Euclid method discussed in
Section 2 and an experimental framework for random polynomials.

Efficiency and stability are further enhanced by using sparse matrices for
sparse polynomials, and in that context setting small elements to zero during
the computations (thresholding).

4 Experiments with stochastic polynomials

We now investigate the algorithm introduced in Section 2 for randomly
generated polynomials p and q. We first explain in detail how the polynomials
are generated before providing two illustrative samples.

In order to test the accuracy of the algorithm we construct polynomials
with known gcd. This is achieved by choosing p and q to be products of
polynomials π1(x),π2(x) and π3(x) , that is, p(x) = π1(x)π2(x) and q(x) =
π1(x)π3(x) . When constructing the factors πi, first the degrees of the πi are
drawn from integers between 1 and 30 using a uniform distribution. Then the
coefficients of the πi are chosen uniformly from the set {i/k | i = −k, . . . , k} .
For the parameter k we consider both k = 4096 and k = 4000 . We check
that π1 is indeed a gcd of p and q (which is true with high probability). The
difference between the two experiments is that for k = 4096 the coefficients
of the polynomial factors πi can be exactly represented in floating point
arithmetic. This is not the case for k = 4000 . However, in both algorithms
the actual gcd computations do incur rounding errors.

The sequence of polynomials pi(x) generated by our variant of Euclid’s
algorithm for the polynomials p and q is determined using Python and in
particular the Polynomial class of sympy. The polynomials pi(x) are both

4 Experiments with stochastic polynomials C137

0 5 10 15 20 25
iteration i

10 17

10 14

10 11

10 8

10 5

10 2

101

fl.pt. result
error

Figure 1: norm of coefficients of pi and its difference to the reference solution
(case k = 4096).

computed in floating point arithmetic and, as reference, exactly in rational
arithmetic. Figures 1 and 2 plot the l2 norm of the coefficients of the pi
and of the coefficients of the difference between the floating point pi and the
rational reference solution for k = 4096 and k = 4000 , respectively. In the
first example (Figure 1) the floating point sympy library code ‘gcd’ returns
an accurate gcd. However, in the second example (Figure 2), the library
code returns gcd = 1 . This is reasonable as p and q have an exact gcd of
one due to the floating point errors of the rounded coefficients— note the
high rounding error of the new algorithm in Figure 2. We intend to perform
future systematic studies of the rounding error growth for this case.

One of the most robust numerical gcd solvers available is based on the
singular value decomposition (svd) of the Sylvester matrix [1]. We have

5 Outlook C138

0 5 10 15 20 25
iteration i

10 16

10 13

10 10

10 7

10 4

10 1

102

fl.pt. result
error

Figure 2: norm of coefficients of pi and its difference to the reference solution
(case k = 4000).

applied our approach to the problems considered by Corless et al. [1] and
were able to reproduce their results at a much lower cost (see Section 5).

5 Outlook

While stable methods based on the svd of the Sylvester matrix work well
for the numerical computation of the gcd, they are expensive as the svd
requires O(n3) floating point operations for computing the gcd of two poly-
nomials of degree n. This is in contrast to Euclid’s algorithm which has
complexity of O(n2) for the same problem. Experiments with random poly-
nomials suggest that a stable variant of the classical Euclid algorithm based

References C139

on monitoring the size of the remainders often works reasonably well while
maintaining the same complexity order as the original Euclidean algorithm.

In future work we intend to study methods which aggregate multiple steps of
Euclid’s algorithm. These methods display scope for stability and efficiency
improvements. The methods based on the Sylvester matrix are an extreme
version where all the steps are treated as one big elimination problem. Our
planned approach balances speed and stability.

References

[1] R. M. Corless, P. M. Gianni, B. M. Trager, and S. M. Watt. “The
singular value decomposition for polynomial systems”. In: Proceedings of
the 1995 International Symposium on Symbolic and Algebraic
Computation. ISSAC ’95. Montreal, Quebec, Canada: ACM, 1995,
pp. 195–207. doi: 10.1145/220346.220371 (cit. on pp. C128, C137,
C138).

[2] H. J. Stetter. Numerical polynomial algebra. SIAM, 2004. doi:
10.1137/1.9780898717976 (cit. on p. C128).

[3] Z. Zeng. “The numerical greatest common divisor of univariate
polynomials”. In: Randomization, relaxation, and complexity in
polynomial equation solving. Vol. 556. Contemp. Math. Amer. Math.
Soc., 2011, pp. 187–217. doi: 10.1090/conm/556/11014 (cit. on
p. C128).

Author address

1. Markus Hegland, Mathematical Sciences Institute, ANU, Australia
mailto:markus.hegland@anu.edu.au
orcid:https://orcid.org/0000-0002-5136-2883

http://dx.doi.org/10.1145/220346.220371
http://dx.doi.org/10.1137/1.9780898717976
http://dx.doi.org/10.1090/conm/556/11014
mailto:markus.hegland@anu.edu.au
http://orcid.org/https://orcid.org/0000-0002-5136-2883

	Euclid's algorithm
	A modified Euclid algorithm
	The Sylvester matrix
	Experiments with stochastic polynomials
	Outlook

