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Abstract

The article reviews the mathematical theory of stochastic Galerkin
and stochastic collocation methods, focusing on their strengths and
limitations. The aim is to construct a first stop, widely accessible doc-
ument that directs a reader to more detailed descriptions of stochas-
tic Galerkin and stochastic collocation methods that are suitable for
their application of interest. References point to rigorous convergence
proofs and accuracy estimates, computational considerations and nu-
merical examples. A supplementary document gives a quick look-up
guide to the strengths and weaknesses of stochastic Galerkin and col-
location methods.
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1 Introduction

Differential equations are used to model a wide range of systems and processes
in engineering, physics, biology, chemistry and the environmental sciences.
These systems are subject to a wide range of uncertainty in initial and bound-
ary conditions, model coefficients, forcing terms and geometry. The effects of
such uncertainty should be traced through the system thoroughly enough to
allow one to evaluate their effects on prediction of model outputs. In addi-
tion to comparing model predictions to observed data, detailed investigation
of model behaviour, independent of observational data, should also be used
to help ascertain confidence levels in model predictions [14].

Associated computational methods and software tools are needed to facili-
tate analysis of model sensitivity and uncertainty. Traditional Monte Carlo
techniques are often infeasible due to the large cpu time needed to run the
model in question. Polynomial chaos (pc) expansions [29] arose as an effi-
cient means of representing stochastic processes. pc expansions are based
on a probabilistic framework and represent stochastic quantities as spectral
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expansions of orthogonal polynomials. Section 2 presents the mathematical
framework of polynomial chaos.

Stochastic Galerkin (sg) methods employ pc expansions to represent the so-
lution and inputs to stochastic differential equations [2, 11, 33]. A Galerkin
projection minimises the error of the truncated expansion and the result-
ing set of coupled equations solved to obtain the expansion coefficients. Sg
methods are highly suited to dealing with ordinary and partial differential
equations and have the ability to deal with steep non-linear dependence of
the solution on random model data [13]. Provided sufficient smoothness con-
ditions are met, pc estimates of uncertainty converge exponentially with the
order of the expansion and, for low dimensions, come with small computa-
tional cost. Section 3 describes the general procedure of stochastic Galerkin
methods and common variants.

Sg necessitates the solution of a system of coupled equations that require
efficient and robust solvers and the modification of existing deterministic
code. Often the forms of the governing equations and/or the deterministic
code used to solve the equations are complicated and make implementing pc
difficult or even impossible. A non-intrusive method, referred to as stochastic
collocation (sc) [20, 26, 32], addresses this limitation. Sc methods utilise in-
terpolation methods and project a set of deterministic simulations, evaluated
using carefully chosen sampled parameter sets, onto a polynomial basis. This
approach is very useful when endeavouring to quantify uncertainty in models
implemented with complex deterministic code which are not easily modified.
Similar to sg methods, sc methods achieve fast convergence when the solu-
tions possess sufficient smoothness in random space. Section 4 discusses sc
methods.

This review should be read in conjunction with that of Xiu [31] who provides
illustrative examples of some of the points made here.
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2 Problem definition

To quantify the uncertainty in a system of differential equations we adopt
a probabilistic approach and define a complete probability space (Ω,F ,P).
This space consists of an event space Ω, comprising of possible outcomes ω,
a σ-algebra F and a probability measure P . Utilising this framework, the
uncertainty in a model is introduced by representing the model input data
as random fields.

2.1 Governing equations

Consider the general differential equation defined on a d-dimensional bounded
domain D ∈ Rd, d = 1, 2, 3 ,

L(x, t,ω,p(ω); u) = f(x, t,ω,p(ω)) , for all x ∈ D , t ∈ (t0, T ], (1)

where x = (x1, . . . , xd) ∈ Rd, d ≥ 1 , are the coordinates in Rd, L is a linear
or non-linear differential operator, u(ω) = (u1(ω), . . . , ui(ω)) ∈ Ri, i ≥
1 , are the unknown solution quantities, and p(ω) = (p1(ω), . . . , pj(ω)) ∈
Rj, j ≥ 1 , are the input data, either parameters or stochastic processes,
characterising the governing equations. Note that we omit equations for the
boundary and initial conditions for convenience.

We are interested in finding the stochastic solution u : Ω×D → R such that
for P-almost everywhere ω ∈ Ω , equation (1) holds.

2.2 Representing random input data

To solve equation (1) numerically we must invoke the ‘finite noise assump-
tion’ [1] to reduce the infinite dimensional probability space (Ω,F ,P) to a
finite dimensional space. Employing any truncated spectral expansion of the
stochastic process in the probability space we characterise the random inputs
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by a set ofN random variables ξ = (ξ1(ω), . . . ξN(ω)). By the Doob–Dynkin
Lemma [24], the solution can then be described by the same set of random
variables, that is u(x, t,ω) = u(x, t,ξ).

The parametric uncertainty of (1) can be found by modelling the parame-
ters p = (p1(ω), . . . , pj(ω)), j = N , as an N-variate random vector ξ. If
the input data p = (p1(x, t,ω), . . . , pj(x, t,ω)), j ≥ 1 , of equation (1) are
spatially and/or temporally dependent random fields, an alternative decom-
position of the stochastic processes must be used. A popular choice used
to represent a stochastic field is the finite term, Karhunen–Loève (kl) ex-
pansion [17]. This decomposition is based on the spectral expansion of the
covariance function of the process pj(x, t,ω):

pj(x, t,ω) = E(pj)(x, t) +

N∑
i=1

√
λiφi(x, t)ξi(ω), (2)

where E(pj)(x, t) is the expected value of the process pj, λi and φi(x, t) are
the eigenvalues and eigenfunctions, also referred to as Empirical Orthogonal
Functions (eofs), of the covariance function, and ξi are uncorrelated random
variables dependent on the form of the covariance kernel. Mathematical
analysis and numerical studies of the convergence of kl expansions were
performed by Scwhab [25] and Huang [12], respectively.

2.3 Polynomial chaos

Polynomial chaos expansions provide a means of representing the second
order stochastic processes in equation (1). Specifically we represent any
second order stochastic process X(ω) by

X(x, t,ω) =

∞∑
i=0

xi(x, t)Φi(ξ(ω))



2 Problem definition C820

and this approximation converges in an L2-sense to any continuous functional
in L2 [4]. Here {Φi(ξ)} forms a complete orthogonal basis, so that

〈Φi, Φj〉 = 〈Φ2i 〉δij , (3)

where δij is the Kroneker delta and 〈·, ·〉 is the inner product in the Hilbert
space L2(Ω,F ,P) determined by the support Γ of the random variable

〈f(ξ), g(ξ)〉 =

∫
Γ

f(ξ)g(ξ)ρ(ξ)dξ ,

with ρ(ξ) denoting the weighting function of the type of random variable
used. The Hermite chaos expansion (pc expansion with Hermite polynomial
basis) has been used effectively to solve stochastic differential equations with
Gaussian inputs [33, 34]. But according to the theorem of Cameron and
Martin [4], the Hermite chaos expansion will converge for arbitrary second
order random processes. For example, Ghana [11] employed Hermite chaos to
model log-normal processes. However. the use of Gaussian processes results
in optimal exponential convergence [19]. In some cases, the performance of
Hermite chaos has been shown to decrease substantially when representing
random processes with non-Gaussian inputs [34]. To achieve faster conver-
gence rates for non-Gaussian inputs, Xiu and Karniadakis [33] developed a
generalisation of Wiener’s chaos known as Wiener–Askey polynomial chaos
or generalized polynomial chaos (gpc). This method chooses the orthogonal
basis {Φ} so that the weighting function in the orthogonality relation (3)
has the same form as the probability distribution of the random variables ξ.
Xiu and Karniadakis [33] showed computationally that the Wiener–Askey
scheme achieves exponential convergence, with respect to the order of the
approximation, when the appropriate random distribution and orthogonal
basis are chosen. A description of the numerical challenges of employing pc
expansions of stochastic fields was given by Debusschere [6].
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3 Stochastic Galerkin methods

According to the Cameron and Martin Theorem we can approximate the
solution u of (1) as a truncated generalised polynomial chaos expansion in-
volving P + 1 expansion terms:

u(x, t; ξ) =

P∑
i=0

ui(x, t)Φi(ξ) (4)

where P depends on the number of dimensions N of ξ and the order M
of the polynomial {Φ} is set according to the required accuracy P + 1 =

(N+M)!/(N!M!). Wiener–Askey polynomials result in the best rate of
convergence when used with their associated random distribution [33]. Or-
thogonal polynomials can also be constructed numerically to deal with arbi-
trary probability measure [33]. Once an appropriate basis has been chosen
the truncated gpc expansions of the solution and input data are substituted
into the governing equations. If the input data are random fields, then the
Karhunen–Loève expansion (2) must first be projected onto a gpc basis be-
fore being substituted. A Galerkin projection then minimises the error in the
gpc expansion. This is achieved by finding the solution u(x, t,ξ) ∈ VΓ ⊂
L2(Ω,F ,P) to the weak form of (1):∫

Γ

L(x, t,ξ; u)v(ξ)ρ(ξ)dξ =

∫
Γ

f(x, t,ξ)v(ξ)ρ(ξ)dξ , (5)

for all v(ξ) ∈ VΓ and x ∈ D . Utilizing the orthogonality condition equa-
tion (3) yields a set of P + 1 coupled deterministic equations that can then
be solved using appropriate numerical methods. The form of an sg method
is dependent on the construction of the subspace VΓ used in (5). The space
spanned by the gpc Wiener–Askey polynomials are one such construction.
Other choices include tensor products of one dimensional, fixed order, poly-
nomial spaces [2, 5] and sparse tensor product spaces [27] (not to be confused
with sparse grid interpolation).
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Once the gpc approximation of the solution is obtained, various statistical
measures are easily calculated. For instance, the mean and variance of the
gpc approximation are ū(x, t) = u0(x, t) and σ2(x, t) =

∑P
i=1 u

2
i (x, t)〈Φ2i 〉,

respectively. The gpc expansion provides a complete functional representa-
tion of the stochastic solution to (1). One can easily evaluate a particular
solution corresponding to a specific realisation of the random variables ξ, pro-
vided the data lies within the support of ξ. Knio [13] overviews sg methods
in the context of computational fluid dynamics.

3.1 Alternative formulations

The sg method has four main limitations.

1. Computational complexity increases rapidly with the number of ran-
dom inputs and the order of the expansion.

2. A high expansion order is required when the dependence of the solution
on the random input data varies rapidly or if a singularity exists in the
random space [28].

3. Errors in the gpc approximation of transient solutions may become
unacceptably large even after only a short time [18].

4. sg necessitates the solution of a system of coupled equations requiring
efficient, robust solvers and modification of deterministic code.

Several techniques have been proposed to overcome the problems associated
with long term integration and steep dependence in the random space. Wan
and Karniadakis [28], Le Mâıtre et al. [15] and Babuska et al. [2] devel-
oped k− p gpc approximations which combine local (−k) refinement in the
stochastic space with increases in the polynomial degree (−p). Wan [28]
advocated the use of Multi-Element generalised polynomial chaos (me-gpc)
which adaptively decomposes the random input space into sub-domains or
elements. This technique takes advantage of the observation that sg is more



4 Stochastic collocation methods C823

efficient for random variables with standard deviation which is relatively
small in comparison to its mean. Although utilising the fast (exponential)
convergence of gpc approximation, the complexity of this method reduces
the observed rate of convergence. Le Mâıtre [15] advocates the use of an or-
thogonal projection of uncertain data and solution variables onto a wavelet
basis, consisting of compact, piecewise smooth, polynomial functions. The
use of a localised polynomial basis results in a low order rate of convergence.
Both these localised expansions produce more robust schemes than the global
gpc expansion and the adaptive decomposition of random space efficiently
controls the error of long term integration. However, these methods are
based upon tensor product spaces in higher dimensions and suffer the curse
of dimensionality.

Adaptive-p-type methods were developed by Li [16] and Lucor [18]. These
methods are based on the observation that some of the terms in the gpc
representation of the solution to (1) do not contribute significantly to its
value. Only the terms which have the greatest contribution to the solution
are kept.

4 Stochastic collocation methods

Recently a new technique referred to as stochastic collocation (sc) [1, 20, 32]
has arisen, to address some limitations of sg. Sc endeavours to combine the
strengths of non-intrusive sampling and sg. As with Monte Carlo methods,
sc requires only the solution of a set of decoupled equations, allowing the
model to be treated as a black box and run with existing deterministic solvers.
Provided the solutions posses sufficient smoothness in the random space, sc
methods maintain the fast convergence of sg [32].

In 1D sc seeks to approximate the solution to (1) using Lagrange interpola-
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tion:

u(x, t, ξ) =

Q∑
k=0

uk(x, t, ξ
(k))Lk(ξ) , (6)

where uk(x, t, ξ
(k)) is the solution at the collocation points {ξ(k)}

Q
k=0 and

Li is the Lagrange polynomial of order Q+ 1 that satisfies the usual relation
Li(ξ

(j)) = δij .

Similar to the sg approach we wish to minimise the error in the sc approx-
imation using the Galerkin method to find the solution u(x, t, ξ) ∈ VΓ to
the weak form (5) of the governing equations (1). The orthogonality prop-
erty of the Lagrange interpolating polynomials decouples the resulting set
of equations so that the sc method only requires solving Q + 1 uncoupled
deterministic problems at each collocation point:

L(x, t, ξ(k);u) = f(x, t, ξ(k)) .

Furthermore, we use Gaussian quadrature to recover the gpc polynomial
expansion of the solution:

ûk =
〈u(x, t; ξ)Φk(ξ)〉
〈Φ2k(ξ)〉

' 1

〈Φ2k(ξ)〉

n∑
k=0

u(ξ(k))Φk(ξ
(k))w(k) , k = 0, . . . , P ,

where w(k) is the Gaussian quadrature weights associated with ξ(k), and
〈Φ2k(ξ)〉 is evaluated analytically. To best utilise the interpolation and Gaus-
sian quadrature framework, abscissa should correspond to the collocation
points of the Q+ 1 Gaussian quadrature rule associated with the weighting
function of the random variable ξ. For example, if ξ is uniformly distributed,
the abscissa are the Gauss–Legendre collocation points.

Xiu [30] showed that the overall error of sc can be decomposed into three
parts: the truncation error of the finite term gpc expansion; the aliasing error
of the Q+ 1 point integration rule; and the error introduced by discretising
the deterministic problem through the use of a finite element scheme such as
the Runge–Kutta solver.
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4.1 Multi-dimensional problems

Although quadrature is well developed for the univariate case, less is known
about the multivariate case. But univariate quadrature can easily be ex-
tended to multiple dimensions using tensor products of one dimensional ap-
proximations. Mathelin [20] and Babuska [1] presented tensor product sc.
Consider the interpolant of the solution u to (6) defined over the support

of ξ. For every dimension we select Qi+1 nodal points (ξ
(0)
i , . . . , ξ

(Q)
i ) in the

support of ξi and subsequently construct the one dimensional quadrature
approximation. The multivariate (N > 1) quadrature rule is then simply
the tensor product of the one dimensional approximations based on the N-
dimensional nodal set and associated weights {ξ(k),w(k)}

Q
k=0 :

(I1 ⊗ · · · ⊗ IN)[u] =

Q∑
j1=0

· · ·
Q∑

jN=0

u(ξ
(j1)
1 , . . . , ξ

(jN)
N ) · (w(j1)

1 ·w(j2)
2 · · ·w

(jN)
N )

where ξ(k) = (ξ
(k)
1 , . . . , ξ

(k)
N ), w(k) = (w

(k)
1 , . . . , w

(k)
N ) and Ii is the 1D quadra-

ture rule in the ith dimension. If an equal number of abscissa are chosen
in each dimension, then the above formula requires (Q + 1)N collocation
points. The full tensor product scheme shown above becomes infeasible for
N large enough. Consequently the need arises for more sophisticated sam-
pling techniques. This leads directly to the use of sparse grid tensor product
approximations.

4.2 Sparse Grid spaces

Sparse grid tensor product approximation has emerged as the most useful tool
to address the curse of dimensionality experienced by sc [23, 32]. Sparse grids
have been extensively used for high dimensional interpolation and quadra-
ture [3, 10]. The approach can yield several orders of magnitude reduction
in the number of collocation points required to achieve the same level of
accuracy as the full tensor grid approach.
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Standard sparse grids are isotropic, treating all dimensions equally. Although
an advance on full tensor product spaces, such approximations can still be
improved. Many problems vary rapidly in only some dimensions, remaining
much smoother in other dimensions. Consequently, it is advantageous to
increase the level of accuracy only in certain non-smooth dimensions, result-
ing in so-called adaptive or anisotropic grids. In some cases the important
dimensions can be determined a priori, but in most cases the collocation
points must be chosen during the computational procedure. Examples of
dimension adaptive, sparse grid, collocation schemes were given by Gana [9]
and Nobile [22].

Foo et al. [8] proposed a multi-element probabilistic collocation method (me-
pcm) which adaptively discretises the random space into elements and imple-
ments a local isotropic sparse grid collocation problem on each element. To
avoid an exponential growth in the number of elements, only a small subset
of the important dimensions are refined.

Xiu [32] employed Stroud cubature points as an alternative to sparse grids
in higher dimensions. The method has relatively low order accuracy but
employs the minimal number of points for its corresponding algebraic accu-
racy [21]. To address the low order accuracy of Stroud sc, Ding et al. [7]
proposed an adaptive Stroud cubature method which subdivides the leading
random dimensions and applies Stroud sc in these subdivided elements.
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