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Abstract

We present a fast solution technique for the problem of interpo-
lation on the sphere, using radial basis functions and multiplicative
Schwarz methods. This problem has applications in geodesy and earth
science. A bound for the condition number of the preconditioned ma-
trix is proved. Since approximation using radial basis functions is a
meshless method, the proof technique is novel compared to that used
in finite element methods. Numerical experiments on relatively large
sets of scattered data points taken from magsat satellite data are
presented. The article illustrates how interpolation of scattered data
on the sphere can be efficiently performed.
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1 Introduction

Data interpolation and fitting problems where the underlying domain is the
sphere arise in many areas including geodesy and earth science in which the
sphere is taken as a model for the earth. Even though in practice measured
data usually contain noise, for simplicity we disregard this and consider the
interpolation problem instead of the more appropriate approximation prob-
lem, with scattered data collected from satellites.

Fasshauer and Schumaker [4] discussed available methods for interpola-
tion of scattered data on the sphere, which use spherical splines [1], and
spherical radial basis functions [9, 10]. We use spherical radial basis func-
tions, a precise definition of which is introduced in Section 2.
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Both theory [7] and numerical experiments (Section 4) show that the
matrices arising from this interpolation problem are very ill-conditioned. We
present an algorithm which uses spherical radial basis functions to construct
the interpolant and a multiplicative Schwarz preconditioner to accelerate
the solution process. We give an estimate for the condition number of the
preconditioned system.

Even though domain decomposition methods (of which multiplicative
Schwarz methods are members) have been extensively studied for finite ele-
ment and boundary element methods, not much has been done for meshless
methods using radial basis functions. For the interpolation problem in Rn
using radial basis functions, the idea of dividing the scattered data set into
smaller subsets for the purpose of defining the Schwarz alternating algorithm
was proposed by Beatson et al. [2]. Work on applying the multiplicative
Schwarz alternating algorithm using spherical splines was also carried out
by Hesse [5], but in that work the data points are not scattered, and again
the Schwarz method is not used as a preconditioner. None of these articles
uses domain decomposition methods as preconditioners to be solved with the
conjugate gradient method, and none studies the condition numbers of the
preconditioned systems. The purpose of this article is to fill this gap. We
study in Section 3 the condition number of the system preconditioned by a
symmetric multiplicative Schwarz method. Previously [6] we studied the use
of additive Schwarz preconditioners for elliptic partial differential equations
on the sphere, and proved a bound for the condition number. A similar ap-
proach is used in the present article for the interpolation problem. Section 4
also reports our numerical experiments which illustrates the efficiency of the
method.
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2 Interpolation by spherical radial basis

functions

Let S be the unit sphere in R3, and suppose that X = {x1, . . . , xN} is a set of
scattered points lying on S. Given real numbers fi, i = 1, . . . ,N , we want to
find a smooth function u defined on S which interpolates the data, namely,

u(xi) = fi , i = 1, . . . ,N . (1)

The interpolant u(x) shall be defined in terms of spherical radial basis func-
tions, which in turn are defined from a positive definite kernel on S.

2.1 Positive definite kernel

A continuous function Φ : S× S→ R is called a positive definite kernel on S
if it satisfies Φ(x,y) = Φ(y, x) for all x,y ∈ S , and if for every set of distinct
points {y1, . . . ,yM} on S, theM×Mmatrix M with entries Mi,j = Φ(yi,yj)

is positive semidefinite. If the matrix M is positive definite, then Φ is called
a strictly positive definite kernel [11, 16].

We define the kernel Φ in terms of a univariate function φ : [−1, 1]→ R ,

Φ(x,y) = φ(x · y) for all x,y ∈ S , (2)

where x ·y is the dot product of two vectors x and y on the sphere, which is
the cosine of the angle between the two points. If φ has a series expansion
in terms of Legendre polynomials P`,

φ(t) =
1

4π

∞∑
`=0

(2`+ 1)φ̂(`)P`(t) , (3)
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where φ̂(`) = 2π
∫1

−1
φ(t)P`(t)dt , then the kernel Φ is represented as

Φ(x,y) =

∞∑
`=0

φ̂(`)
∑̀
m=−`

Y`,m(x)Y`,m(y) ,

where Y`,m, m = −`, . . . , ` , are spherical harmonics of order `; see the canon-
ical book by Müller [8].

The kernel Φ defined with this univariate function φ is called a zonal
kernel. Chen et al. [3] established a complete characterisation of strictly
positive definite kernels: the kernel Φ is strictly positive definite if and only
if φ̂(`) ≥ 0 for all ` ≥ 0 , and φ̂(`) > 0 for infinitely many even values of `
and infinitely many odd values of `.

We assume that φ̂(`) > 0 for all ` ≥ 0 . The native space associated
with φ is defined by

Nφ :=

{
v ∈ D ′(S) :

∞∑
`=0

∑̀
m=−`

|v̂`,m|2

φ̂(`)
<∞} ,

where D ′(S) is the space of distributions defined on S, and v̂`,m = 〈v, Y`,m〉
with 〈·, ·〉 being the L2-inner product on S. The space Nφ is equipped with
an inner product and a norm defined by

〈v,w〉φ =

∞∑
`=0

∑̀
m=−`

v̂`,mŵ`,m

φ̂(`)
and ‖v‖φ =

( ∞∑
`=0

∑̀
m=−`

|v̂`,m|2

φ̂(`)

)1/2
.

If the coefficients φ̂(`) for ` = 0, 1, . . . satisfy

c1(`+ 1)−2τ ≤ φ̂(`) ≤ c2(`+ 1)−2τ (4)

for some positive constants c1 and c2, and some τ ∈ R , then the native
space Nφ is identified with the Sobolev space Hτ(S), and the corresponding
norms are equivalent. In particular, if τ > 1 then the series (3) converges
pointwise and Nφ ⊂ C(S), which is essentially the Sobolev embedding theo-
rem. Here C(S) is the space of continuous functions on S.
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2.2 Spherical radial basis functions

Recall that X = {x1, . . . , xN} is the set of interpolating points on the sphere.
The spherical radial basis functions Φj, j = 1, . . . ,N , associated with X and
the kernel Φ are defined by

Φj(x) := Φ(x, xj) =

∞∑
`=0

∑̀
m=−`

φ̂(`)Y`,m(xj)Y`,m(x) .

We note that, for any continuous function v defined on the sphere,

v(xj) =

∞∑
`=0

∑̀
m=−`

v̂`,mφ̂(`)Y`,m(xj)

φ̂(`)
= 〈v,Φj〉φ , j = 1, . . . ,N . (5)

In other words, Φ is the reproducing kernel of the native space Nφ when
τ > 1 .

Let V := V
φ
X := span{Φ1, . . . , ΦN}. We note that if τ > 1 , then V ⊂

Nφ = Hτ(S) ⊂ C(S). The interpolant u satisfying (1) is sought in this finite
dimensional space V .

2.3 Solvability of the interpolation problem

The interpolant u ∈ V is uniquely defined thanks to the positive definiteness
of the kernel Φ. Indeed, by writing u =

∑N
j=1 cjΦj we rewrite (1) as

N∑
j=1

cjΦj(xi) = fi , i = 1, . . . ,N ,

or in matrix form
Ac = f , (6)
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where A = (Φj(xi))
N
i,j=1 , c = (cj)

N
j=1 , and f = (fj)

N
j=1 . The matrix A is

both symmetric and positive definite (see Sections 2.1 and 2.2), and so (6)
is solved by using, for example, the conjugate gradient method.

Due to (5), equation (1) is rewritten as

〈u,Φi〉φ = 〈f,Φi〉φ , i = 1, . . . ,N , (7)

where f is a smooth function satisfying f(xi) = fi . We note that the func-
tion f is introduced here purely for analysis purposes.

Error analysis for this problem was carried out by Narcowich et al. [9, 10].
Levesley et al. [7] to show that the matrix A is ill-conditioned. In the follow-
ing section, we design a preconditioner for this system, using multiplicative
Schwarz methods.

3 Symmetric multiplicative Schwarz

preconditioner

3.1 Multiplicative Schwarz operator

Thanks to (7) we view the interpolation problem (1) as a variational problem,
with a bilinear form defined on Hτ(S) by

a(v,w) := 〈v,w〉φ for all v,w ∈ Hτ(S) .

By using this bilinear form, we define the additive and multiplicative Schwarz
operators as usual [12, 13].

Definition 1 Let J be a positive integer. Let V be decomposed as V = V0 +

· · ·+ VJ , where Vk, k = 0, . . . , J , are subspaces of V.
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1. The projections Pk : V → Vk , k = 0, . . . , J , are defined by

a(Pkv,w) = a(v,w) for all v ∈ V, w ∈ Vk .

2. The additive Schwarz operator is defined by Pad = P0 + · · ·+ PJ .

3. The symmetric multiplicative Schwarz operator is defined by Psmu =

I − EtmuEmu , where I is the identity operator on V, Emu is the error
propagation operator defined by Emu = (I− PJ) · · · (I− P0), and Etmu is
its transpose.

The operator Pad is introduced here purely for the analysis purpose; see
the proof of Theorem 2. In the abstract form, solving (6) by a symmetric
multiplicative Schwarz method is solving Psmuu = g , where g is obtained
from f by solving subproblems; see the book by Toselli and Widlund [13] for
more details. In the implementation, one solves (6) by the preconditioned
conjugate gradient method, which requires an algorithm to compute the ac-
tion of the preconditioner A−1

smu on a residual vector r, where A−1
smu is related

to the matrix representation Psmu of Psmu by Psmu = A−1
smuA . This algorithm

is defined in the following subsection.

3.2 Algorithm

For k = 0, . . . , J , let Ak be the restriction of the matrix A onto each sub-
space Vk, and let Rk be the matrix that transforms the basis of V to the
basis of Vk. Then for any r ∈ RN, Algorithm 1 computes A−1

smur.

The key point is how to define the subspace decomposition V = V0 +

· · · + VJ , which must be different from finite element or boundary element
methods. These methods define subdomains from a partition (or mesh) of
the geometry into elements. In the present case, there is no mesh, and thus
the subdomains will be defined based on scattered data.
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Algorithm 1:

y0 := Rt0A
−1
0 R0r ;1

for k = 1, . . . , J do2

yk := yk−1 + RtkA
−1
k Rk(r − Ayk−1)3

end4

for k = J− 1, . . . , 0 do5

yk := yk+1 + RtkA
−1
k Rk(r − Ayk+1)6

end7

A−1
smur := y08

3.3 Subspace decomposition

To define the subspace decomposition, we first decompose the data set X in
the form X = X0 ∪ · · · ∪ XJ as in Algorithm 2.

The reason to include the condition on α in Step (8)–(9) is to ensure that
the centres are not clustered at one place which may result in a situation
in which not all points in X are covered. The subsets Xk overlap. The
subspaces Vk are defined by

Vk = span{Φj : xj ∈ Xk}, k = 0, . . . , J .

The set X0 defining V0 is analogous to the coarse grid in finite element meth-
ods, which is necessary for global communication, as explained by Toselli and
Widlund [13].

3.4 Bound on the condition number of Psmu

We now state and sketch the proof of our main result.
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Algorithm 2:

Select α ∈ (0, π/3) and β ∈ [α, π];1

p1 = x1 ∈ X;2

X0 := {p1};3

X1 := {x ∈ X : cos−1(x · p1) ≤ α};4

J = 1, k = 1;5

while X1 ∪ · · · ∪ Xk 6= X do6

k = k+ 1;7

pk is chosen from X \ X0 such that8

cos−1(pk−1 · pk) ≥ β, (8)

cos−1(pl · pk) ≥ α for all pl ∈ X0 with l < k− 1. (9)

X0 := X0 ∪ {pk};
Xk := {x ∈ X : cos−1(x · pk) ≤ α};9

end10

J = k;11
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Theorem 2 The extremum eigenvalues of Psmu are bounded by

λmax(Psmu) ≤ 1 and λmin(Psmu) ≥
1

(1+ 2J2)
(
1+ J(1− ‖Q̃‖φ)−2

) ,
so that

κ(Psmu) ≤ (1+ 2J2)

(
1+

J

(1− ‖Q̃‖φ)2

)
,

where ‖Q̃‖φ is the operator norm of Q̃ := (I − PJ) · · · (I − P1) defined from
the norm of the native space Nφ.

Proof: The bound for λmax(Psmu) is standard as described by Toselli and
Widlund [13]. We prove, using the same technique as in our previous arti-
cles [6, 14], that λmin(Pad) ≥ 1/

[
1+J(1− ‖Q̃‖φ)−2

]
. The bound for λmin(Psmu)

then follows by using standard arguments for Schwarz operators; see the book
by Toselli and Widlund [13]. ♠

Our numerical experiments show that ‖Q̃‖φ depends on α and β; see
previous works for more discussion [6, 14]. The theoretical bound is not
sharp, and further study is in progress.

4 Numerical experiments

In the experiments, in order to check the accuracy of our method, we chose
to interpolate a known function, namely, f(x) = exp(x1 + x2 + x3), where
x = (x1, x2, x3) ∈ S . The univariate function φ defining the kernelΦ, see (2),
is defined by φ(t) = ρm(

√
2− 2t), where ρm are Wendland’s functions [15]

given in Table 1. Narcowich and Ward prove [10, Proposition 4.6] that (4)
holds with τ = m+ 3/2 .
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Table 1: Wendland’s radial basis functions

m ρm(r) τ

1 (1− r)4+(4r+ 1) 2.5

2 (1− r)6+(35r2 + 18r+ 3) 3.5

3 (1− r)8+(32r3 + 25r2 + 8r+ 1) 4.5

Table 2: Unpreconditioned systems
m N λmin λmax κ cpu iter
1 12345 0.3241e-03 0.4966e+03 0.1532e+07 3159 1321

24689 0.5352e-03 0.9942e+03 0.1858e+07 16703 1362
49377 0.2093e-02 0.1988e+04 0.9496e+06 55082 994

2 12345 0.1448e-02 0.1198e+04 0.8275e+06 2379 985
24689 0.3875e-02 0.2400e+04 0.6193e+06 11350 880
49377 0.1257e-01 0.4799e+04 0.3816e+06 48747 740

3 12345 0.1417e-02 0.3315e+03 0.2339e+06 2206 642
24689 0.2977e-02 0.6639e+03 0.2230e+06 6620 639
49377 0.6010e-02 0.1328e+04 0.2209e+06 43617 638
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Table 3: Preconditioned systems
m N cosα cosβ J λmin λmax κ cpu iter
1 12345 0.57 -0.66 11 9.9855e-01 1.0 1.000 334 2

12345 0.55 -0.63 11 9.9915e-01 1.0 1.000 374 2
24689 0.80 -0.77 25 9.9657e-01 1.0 1.003 1858 2
24689 0.70 -0.86 16 9.9817e-01 1.0 1.002 2017 2
49377 0.95 -0.49 94 9.4714e-01 1.0 1.056 22401 2
49377 0.90 -0.57 49 9.8726e-01 1.0 1.013 12082 2

2 12345 0.57 -0.66 11 9.8318e-01 1.0 1.017 334 2
12345 0.55 -0.63 11 9.9983e-01 1.0 1.000 374 2
24689 0.80 -0.77 25 9.5922e-01 1.0 1.043 1922 2
24689 0.70 -0.86 16 9.9962e-01 1.0 1.000 2075 2
49377 0.95 -0.49 94 6.8766e-01 1.0 1.454 32542 3
49377 0.90 -0.57 49 5.0194e-01 1.0 1.992 18526 3

3 12345 0.57 -0.66 11 9.5568e-01 1.0 1.046 452 2
12345 0.55 -0.63 11 9.9957e-01 1.0 1.000 505 2
24689 0.80 -0.77 25 9.3008e-01 1.0 1.075 1512 2
24689 0.70 -0.86 16 9.9991e-01 1.0 1.000 1610 2
49377 0.95 -0.49 94 4.4342e-01 1.0 2.255 49555 4
49377 0.90 -0.57 49 3.1444e-01 1.0 3.180 27771 4
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We solved the problem using various data sets X extracted from a very
large set X of 29, 672, 661 data points collected by nasa satellite magsat.
These sets are defined as follows. First, we used a thinning process [14] to
extract from X a set X satisfying qX = π/600 , where qX is the separation
radius defined by

qX :=
1

2
min

i,j∈{1,...,N}
i 6=j

cos−1(xi · xj) .

Here N = 49, 377 is the cardinality of X, which is not pre-determined but
is a consequence of the thinning process. This set X which covers the whole
sphere is not necessarily the unique set having separation radius qX = π/600 .
In order to compare the condition numbers, we also solved the problem on
smaller subsets of X (by successively removing points of even indices). This
results in sets of cardinalities 24, 689 and 12, 345. (Results for smaller sets
are available but are not included in the article due to page limitation.)

The results for the unpreconditioned matrices are presented in Table 2,
and for the preconditioned matrices in Table 3, with various values of m,
namely m = 1, 2, 3 . This table clearly shows that λmax(Psmu) is bounded
by 1. A clear advantage of the preconditioner is observed, both in terms of
condition numbers κ, cpu times, and number of iterations (Iter).
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