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Abstract

We report on progress in the development of the Australian Com-
munity Climate and Earth Systems Simulator Global and Regional
Ensemble numerical weather Prediction Scheme at the Australian Bu-
reau of Meteorology. Based on the UK Met Office ensemble, AGREPS
implements an Ensemble Transform Kalman Filter to generate inde-
pendent initial perturbations as fast growing disturbances with struc-
tures and growth rates typical of the analysis errors. This method
allows information about the fast growing errors to be incorporated
into the initial perturbations for the forecast. An ensemble of model
states is propagated, using the numerical weather prediction system
and observing network at the Australian Bureau of Meteorology, from
which covariances are constructed then localized and inflated to min-
imize the effect of small sample size.
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1 Introduction

Using deterministic forecasts the early pioneers of numerical weather predic-
tion tried to establish the theoretical limits to atmospheric predictability in
terms of the divergence of pairs of initially close states [4, 11, 7]. Weather
forecasting has come to be regarded as a statistical problem of predicting
the probability density function of atmospheric states or, equivalently, of
calculating the moments of meteorological variables. The inherently chaotic
nature of the system combined with errors in the observed initial conditions
lead to the failure of deterministic forecasts after a number of days (depen-
dent on the flow dynamics).

In numerical weather prediction and data assimilation for large numerical
prediction models, with millions of variables, calculating the full covariance
matrices of the background errors as they evolve with time remains a very dif-
ficult problem. Ensemble methods estimate the flow dependent background
error covariance matrices by construction from ensembles of short term fore-
casts with slightly differing initial conditions. In the ensemble Kalman filter
(ENKF) approach an ensemble of model states is propagated with a fully
nonlinear model allowing the error covariance matrix to be calculated with
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no moment closure required. This allows the construction of the forecast
error covariance at any given time by averaging over the ensemble. Unlike
single realization deterministic forecasts, ensemble forecasts are able to pro-
vide both improved estimates of the mean and estimates of the forecast error
variance. For some cases ensembles may also give information about higher
order moments.

Typically, sampling error arises due to an insufficient number of realiza-
tions, as occurs when the sample size is less than the number of degrees of
freedom, which in some cases is further exacerbated through the use of per-
turbed observations such as is the case for the stochastic ENKF. For global
ensembles, covariance localization [3, 5], in which one assumes that back-
ground error correlations vanish for points separated by a distance greater
than several thousand kilometers is a common approach to removing spurious
long range correlations which arise due to small ensemble size. In ensemble
data assimilation it is generally necessary to employ an empirically selected
covariance inflation factor in order to ensure that the filtering solution does
not diverge from the observations and to keep prior covariances small [1, 5].
For ensemble prediction, inflation is also necessary to account for an under-
estimation of the analysis error covariances.

For typical ensemble sizes currently available in numerical weather pre-
diction (< 100), Monte Carlo methods such as the ENKF, in which random
initial perturbations are sampled isotropically, were found to grow too slowly,
leading to underestimated error variances. More recent approaches endeavor
to generate independent initial perturbations as fast growing disturbances
with structures and growth rates typical of the analysis errors such as the
‘breeding’ method developed by Toth & Kalnay [13]. This method of bred
initial forecast perturbations allows information about the fast growing er-
rors to be incorporated into the initial perturbations for the forecast [8]. For
particularly dynamic flows, such as when emergent coherent structures are
developing, errors arise due to fast growing large scale instabilities. Toth &
Kalnay [13] argue that the bred vectors are stochastically and nonlinearly
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modified versions of the leading Lyapunov vectors (LLV’s). They also note
that after an initial transient period (= a week) initial random perturbations
growing on tropospheric flows converge toward the structure of the LLvs.
In ‘breeding’ the perturbations are periodically rescaled using a global (or
regional) scaling factor so that they approximate fast growing errors within
assimilation schemes. Tracton and Kalnay [14] describe the implementation
of an operational ensemble prediction scheme based on the breeding of grow-
ing modes.

The Ensemble Transform Kalman Filter (ETKF) [12, 17] was developed in
an effort to reduce the loss of spread associated with the rapid convergence of
the initial random perturbations onto the LLV structures. The ETKF employs
a transform matrix to mix perturbations from different members, which are
taken to be the difference between the perturbed forecast and the ensemble
mean (or in some cases the control forecast). The ETKF falls into a class of
deterministic ensemble square root filters based on the use of unperturbed
observations [12]. Wang and Bishop [15] compared the breeding method to
the ETKF, while Wei et al. [17] implemented the ETKF in an operational
global prediction system.

In this article we describe progress on the development of the ACCESS
Global & Regional Ensemble Prediction Scheme (AGREPS) at the Bureau of
Meteorology, Centre for Australian Weather & Climate Research. AGREPS
is based on the United Kingdom Met Office ensemble (MOGREPS), employs
an ensemble transform Kalman filter and critically uses global and regional
observations to determine the transform matrix and inflation factors.
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2 Ensemble transform Kalman filter

The ETKF is based on an application of the Kalman filter methodology in
which k-ensemble forecast and analysis perturbations are

1
YA k_l[z}c,z;...,z]i],

1
Za:ﬁ[z}c,zg,...,zﬁ] (1)

and where the state vectors are z! = x{ — x" and z® = x® — x® which are
n-dimensional in model space. Typically x' is the mean of k-ensemble fore-
casts while x¢ is the analysis from the ACCESS 4D-variational operational
data assimilation system. As we are principally concerned with ensemble
prediction and not data assimilation the mean or first moment is unchanged
between analysis and forecast. The ETKF methodology acts to choose appro-
priate initial forecast perturbations consistent with error covariance update
equations within the vector subspace of ensemble perturbations,

P¢=Pf—PH'(HP'H' + R"")HP' (2)

where P™ and P are n x n forecast and analysis covariance matrices formed
as PT = Z'Z™ and P® = Z°Z*" where superscript T denotes the matrix
transpose. R is the p x p observational error covariance matrix for p ob-
servational values, H is the linearized observational operator mapping the
forecast grid point values onto the observational points. Equation (2) is the
Kalman filter error covariance update equation; however, unlike the ENKF,
the ETKF does not use perturbed observations. O’Kane & Frederiksen [9] and
Tippett et al. [12] discussed relevant details of both the Kalman filter and
ETKF equations. In order to calculate the normal ETKF transform matrix T,
we are required to calculate the matrix of forecast ensemble perturbations in
normalized observation space

E = (R,*VZHZf )T (R*‘/ZHZf> (3)
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where Zf are the forecast perturbations.

We now find the eigenvectors C and eigenvalues I' of equation (3) which
is equivalent to the matrix ZTH'R'HZ'. The transform matrix T is now
defined in terms of the k x (k— 1) matrix of non-zero eigenvectors C and the
(k—1) x (k — 1) diagonal matrix with non-zero eigenvalues such that

T=C(+I)2CT (4)

where I is the identity matrix. Equation (4) corresponds to the transform
matrix in spherical simplex form as described in articles by Purser [10] and
Wang et al. [16]. By centering the analysis perturbations about the analysis,
the spherical simplex form allows nearly twice as many uncertain directions
to be spanned as the traditional positive-negative centering; however, this
approach is only appropriate where the number of uncertain directions is
larger than the ensemble size.

In breeding, each analysis perturbation is produced by a straightforward
rescaling of the forecast perturbation by a constant factor z& = zfc. The
ETKF on the other hand generates new analysis perturbations via the trans-
formation matrix

7 =17'T, (5)

that is, the transform matrix tells how to mix perturbations from different
members. Equation (3) shows that in order to generate T we require a good
knowledge of the observational error covariances. In that regard satellite ra-
diance data from the Advanced TIROS Operational Vertical Sounder (ATOVS)
and data from dropsonde (weather reconnaissance devices containing a GPS
receiver), along with pressure, temperature, and humidity (PTH) sensors to
capture atmospheric profiles and thermodynamic data, are critical to the
functionality of the ETKF. In addition, observations are not used directly:
instead observations are extracted, processed and quality controlled, and the
model forecast of the observations used thereby removing the need for the
ETKF code to know the observational operator H.



2 Ensemble transform Kalman filter C391

2.1 AGREPS ensemble transform Kalman filter
implementation

As stated, the purpose of the ETKF code is to provide initial conditions for the
AGREPS forecasts. This is achieved by producing perturbation fields for wind,
temperature, humidity and pressure on all model levels (currently 50 vertical
levels) for each ensemble member (currently limited to 23 due to the large
computational cost). The perturbation fields are then combined with the
reconfigured analysis provided by 4D variational data assimilation while the
control forecast uses a reconfigured analysis without perturbations and hence
receives no input from the ETKF. Reconfiguration refers to changing resolu-
tion to the required domain. The ETKF generates analysis perturbations by
mixing and scaling evolved perturbations valid at the new analysis time (in
our case time+12 hrs) from the previous forecast cycle. Given error estimates
for each assimilated observation and the background error covariance, rep-
resented by the evolved perturbations from the previous forecast, the ETKF
transform matrix produces an m-dimensional representation of the analy-
sis error covariance matrix of an optimal data assimilation system, where
n is the number of perturbations. Model observations are required for each
observation for each ensemble member in order to provide estimates of back-
ground uncertainty in observation space. The required pseudo-observations
are calculated separately by an additional observation processing system.

2.2 Horizontal localization and inflation

The large computational costs involved in running a single operational nu-
merical weather forecast model, let alone many, imposes a severe upper bound
on the dimension of our ensemble (currently 23 plus control). Unrealistically
small ensemble sizes often results in overestimated background error covari-
ances and as a consequence overestimation of the impact of each observa-
tion. To ameliorate this sampling error we employ the horizontal localiza-
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tion methodology of Houtekamer & Mitchell [6] in which 92 predetermined
equally spaced localization centers are specified over the global domain. For
each center, only observations falling within a 5000 km radius are used to
produce a local transform matrix. The final transform matrix for each point
on the model grid is obtained by interpolation between the transform ma-
trices for the nearest localization centers. This approach effectively removes
any spurious long range correlations present in the ensemble estimated back-
ground error covariance, and has also been shown to improve the relationship
between ensemble spread and error as a function of latitude. Disadvantages
are that the localization process can remove information due to large scale
flow dependent inhomogeneities. Future plans are to investigate flow adap-
tive methods to reduce spurious ensemble correlations through the use of
moderation functions generated by smoothed ensemble correlations raised to
a higher even ordered power [2].

For the ETKF inaccuracies in estimation of the observation errors can lead
directly to an over/under spread ensemble. In data assimilation, covariance
inflation is commonly used to increase error variances for correlated obser-
vations. For the ETKF, the small number of perturbations compared to the
nominal degrees of freedom of model space results in the analysis error co-
variance being greatly under estimated by the covariance of the transformed
ensemble. Therefore, we choose to inflate the analysis perturbations using
a variant of the method of Wang & Bishop [15]. The inflation procedure
assumes that the global sum of squares of the forecast and observation dif-
ferences at the same time does not depend on the initialization of the forecast
and that the number, quality and location of observations are similar at all
analysis times. Equation (6) states that the square of the ensemble spread
depends on the difference between the mean squared innovation and the
summed observation error variances:

Tr(HP'H') = Tr[(y — Hx")(y — HX")"] — Tr(R). (6)

Based on this, Wang & Bishop [15] proposed that the transform matrix
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calculation be inflated using

o Tr[(y — HX")(y — HX)T] — Tr(R)
A Tr(HP'H")

) (7)

where 7, and 7,7 correspond to new and old inflation factors and the
terms in the correspond to the rms error of the ensemble mean for the
selected observations (numerator) and the rms spread of the corresponding
model observations (denominator). However, ensemble spread calibration
requires knowledge of the true observation error variance R, which is only
available using dropsonde and ATOVS data. Equation (7) was found to lead
to spurious oscillatory behavior not present in the more stable second order
variant equation

1/2

{[Trlly — Hx")(y — Hx")T] - Tr(R)] Tr(HP'H')n 1} -

Tr(HP™H"),

Th = Tth—

The Kalman filter methodology implicitly assumes near linear perturbation
growth which will be problematic for cases where errors induced by barotropic
and baroclinic instabilities grow rapidly and then tend to saturate. By includ-
ing information about flow dependent ‘errors of the day’ the ETKF approach
is able to capture some information about nonlinear error growth. O’Kane
& Frederiksen [9] considered cases for which fast growing disturbances occur
and examined the role of higher order moments in non-Gaussian flows. Such
cases are typified by the reduced predictability associated with the forma-
tion and decay of large scale coherent structures in the atmosphere evident
as high-low blocking dipoles [8].

3 Discussion and future plans

To date our efforts have been focused toward the implementation of AGREPS
on the supercomputing system at the Bureau of Meteorology. This has in-
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AGREPS P robability map for 24h precip 10mm (magenta), and 10m wind speed > 15m/sec (green)
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volved setting up cold start and forecast ensemble suites for both global
(80 km) and a high resolution limited area Australian regional (37.5km) do-
main. The regional ensemble cannot be run independently as it requires
lateral boundary conditions provided by the global ensemble. Addition-
ally AGREPS has been integrated into a 4D variational operational data
assimilation scheme. Figure 1 describes an example of a forecast product
that AGREPS produces, namely a combined high impact global weather risk
map for precipitation exceeding 10 mm (magenta) and 10 m winds exceed-
ing 15m/sec (green) which in this particular case are valid on day two of the
given forecast period beginning 10 January 2008. Future efforts are likely to
be focused on validation and progressing the ensemble to become an official
Bureau operational suite. Research efforts are also ongoing, with particular
interests in methods of covariance localization, inflation, and the effect of
sample size on forecast accuracy.
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