
ANZIAM J. 50 (CTAC2008) pp.C505–C518, 2008 C505

Application of method of false transients to
generate smooth grids around a body in

motion

E. Ly1 D. Norrison2

(Received 12 August 2008; revised 27 November 2008)

Abstract

A time marching finite difference scheme incorporating an efficient
method of false transients, an approximate factorisation technique and
a time steps cycling process, is presented for solution of a system of
Poisson’s equations. The solution to the equations provides a smooth
three dimensional boundary fitted grid around a body in motion. The
scheme required much less computational effort than that required by
other iterative schemes. In closure, examples of a static grid around
an aircraft tailplane and a dynamic grid around a flapping wing are
presented.

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1425
gives this article, c© Austral. Mathematical Soc. 2008. Published December 5, 2008. issn
1446-8735. (Print two pages per sheet of paper.)

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1425

Contents C506

Contents

1 Introduction C506

2 Grid generation process C507
2.1 System of Poisson’s equations C507
2.2 Numerical solution procedure C509

3 Flapping wing C511

4 Concluding remarks C515

References C516

1 Introduction

In order to solve the governing partial differential equations (pdes) of fluid
dynamics numerically, approximations to the partial differentials are intro-
duced. Many of the numerical methods for solving such pdes require all
partial derivatives to be converted into finite difference equations (fdes),
which are solved at discrete points within the domain of interest. Hence, a
set of grid points within and on the boundaries of the domain is required
to be specified to form a grid system, in a process known as grid genera-
tion [4, 8, 11, 12].

We employed the elliptic grid generation method, together with a grid
stacking technique as described by the authors [10], for generating smooth
boundary fitted static grids around a three dimensional body. However,
in unsteady aerodynamic and aeroelasticity computations, the body moves
with respect to time in a particular mode (or even a combination of different
modes) of motion such as pitching, heaving or flapping. This in turn cause
the grid points, especially those points near the body, to move in a similar

2 Grid generation process C507

nature, resulting in a need to regenerate a new grid around the body. Conse-
quently, as the body moves, a system of Poisson’s equations, subject to a new
set of Dirichlet boundary conditions on all boundaries at each time level, is
solved to generate the new grid. Here we present the time marching version
of the scheme developed by Ly and Norrison [10] for generating smooth and
accurate dynamic grids around a moving body. In contrast to the past work
of other researchers, for a body that moves in a harmonic motion, normally
the new grids are generated only at a number of time levels of the motion
cycle, and an interpolation technique is employed to generate (approximate)
grids for other intermediate time levels. This helps to reduce the computa-
tional time spent by the solver for the grid generation process. But, the grids
are less accurate in a sense that the coordinate of many grid points close to
the body are approximated rather than recalculated by solving the grid equa-
tions. With the efficient numerical scheme presented here, it is now possible
to generate an accurate grid at each time level without much increases in
computational effort required from the solver.

The present scheme incorporates a method of false transients [5, 6, 7],
an approximate factorisation technique [2, 5, 11] and a variable time steps
cycling process [5]. These techniques are implemented into a fortran90
computer code named mvgrid3d. Examples of generated grids around an
aircraft tailplane and a flapping rectangular wing are presented in Section 3.

2 Grid generation process

2.1 System of Poisson’s equations

In the xz-plane, the mapping process from the physical coordinates r = (x, z)

to the computational coordinates ϑ = (ξ, ζ) is related by ϑ = ϑ(r), assuming
that the derivatives of all orders are continuous. The mapping is one-to-one
to ensure the grid lines of the same family do not cross each other [4], and

2 Grid generation process C508

Figure 1: Grid generated around an aircraft tailplane.

that the grid distribution is smooth with minimum skewness. The following
system of Poisson’s equations is considered

∂2ϑ

∂x2
+
∂2ϑ

∂z2
= S , (1)

where S = (p, q) contains the source terms. The source terms are used
to enforce grid points clustering in a specific region of the domain. The
dependent and independent variables of Equation (1) are interchanged to
provide (mathematical derivations are described by Ly and Norrison [8])

∂r

∂ζ
· ∂r
∂ζ

∂2r

∂ξ2
− 2

∂r

∂ξ
· ∂r
∂ζ

∂2r

∂ξ∂ζ
+
∂r

∂ξ
· ∂r
∂ξ

∂2r

∂ζ2
= −

p

J2
∂r

∂ξ
−
q

J2
∂r

∂ζ
, (2)

where · denotes the dot product of two vectors, and J (J 6= 0) is the Jacobian
of transformation,

1

J
=
∂x

∂ξ

∂z

∂ζ
−
∂x

∂ζ

∂z

∂ξ
. (3)

2 Grid generation process C509

2.2 Numerical solution procedure

An artificial time dependent term, rτ (where τ is the artificial time scale), is
appended to Equation (2) to incorporate temporal numerical dissipation

∂r

∂τ
=

(
∂r

∂ζ
· ∂r
∂ζ

∂2r

∂ξ2
+
p

J2
∂r

∂ξ

)
−2

∂r

∂ξ
· ∂r
∂ζ

∂2r

∂ξ∂ζ
+

(
∂r

∂ξ
· ∂r
∂ξ

∂2r

∂ζ2
+
q

J2
∂r

∂ζ

)
. (4)

Since the boundary conditions are locally time independent at each time
level, and provided that the numerical solution converges [5, 6], we anticipate
that rτ → 0 as τ → ∞ . The rτ term is approximated by a general time
difference rule in a padé form [5, 13]. Note that right side of Equation (4)
represents the residual R which measures how well the fdes are satisfied by
the approximate solution.

Equation (4) is approximately factorised by neglecting all mixed deriva-
tives, and third and higher order terms in ∆τ, and solved in the following
alternating direction manner[

1− ∆τ̃

(
∂r

∂ζ
· ∂r
∂ζ

∂2

∂ξ2
+
p

J2
∂

∂ξ

)n]
∆r∗ = ã

←−
∆ τr

n + ∆τ̃
ω

b
Rn , (5)[

1− ∆τ̃

(
∂r

∂ξ
· ∂r
∂ξ

∂2

∂ζ2
+
q

J2
∂

∂ζ

)n]−→
∆ τr

n = ∆r∗ , (6)

rn+1 = rn +
−→
∆ τr

n . (7)

In Equations (5), (6) and (7),
←−
∆ τ and

−→
∆ τ represent the backward and forward

time difference operators,

∆τ̃ =

(
b

1+ a

)
∆τ , ã =

a

1+ a
(with a 6= −1), (8)

and ω is a relaxation factor (scheme is over relaxed when ω > 1 and under
relaxed when ω < 1). The time difference rule used in the approximation
is defined through the constants a and b. For example, when (a, b) =

2 Grid generation process C510

(0, 1), Euler implicit rule is used to discretise the time derivative. Numerical
experiments indicate that the scheme becomes unstable if the Euler explicit
and leap frog time difference rules are employed.

In each iteration, a new approximation to the solution is determined by
systemically solving Equation (5) for the dummy temporal differences ∆r∗,

Equation (6) for the unknown vector
−→
∆ τr

n, and applying Equation (7) to up-
date the solution vector rn+1 . This solution method is potentially fast, since
the method is fully vectorised, and variable time stepping is incorporated.
Note that for an accurate factorisation, and to ensure that each linear equa-
tion system is strongly diagonally dominant, the time steps must be small
relative to the spatial grid spacings. Ly and Gear [6] observed that large
errors occur at the extreme ends of the frequency range, and suggested that
this unfavourable behaviour be eliminated by cycling the time steps in a geo-
metric fashion, but with repeated endpoints (∆τ̃1 = ∆τ̃2 and ∆τ̃M−1 = ∆τ̃M,
where M is the number of time steps per cycle). Detail descriptions on the
solution procedure, time steps cycling process and finite difference discreti-
sations have been described by Ly and Norrison [8, 9].

In the spanwise direction, the mapping is governed by η = η(y), where
η and y are the computational and physical coordinates, respectively. The
present code allows the user to allocate span stations along the body and in
the region between the body and farfield spanwise boundary in the following
manners:

1. uniform distribution,

2. cluster towards the tip section of the body in an exponential manner,
and

3. at discrete locations designated by the user.

At each span station, the location of body leading and trailing edges and
sectional body profile, which are required for the generation of the grids,

3 Flapping wing C511

Figure 2: Comparison of convergence histories.

are computed from the functions describing the body shape. However, at
the tip section and further spanwise, it is necessary to extend the leading
and trailing edge functions to ensure that ξ remains twice differentiable with
respect to both x and y, and ξy = 0 at the spanwise boundary. This ensures
that the grid generated in this region is smooth, as reported by Gear [3] and
Ly and Norrison [10]. Figure 1 shows an example of a grid generated around
an aircraft tailplane, where leading and trailing edge functions are extended
to ensure that the grid near the tip section is smooth.

3 Flapping wing

For the computational examples presented here, the mvgrid3d code em-
ployed an Euler implicit time difference rule to discretise the time derivative
term, and a sequence of eight time steps per cycle, cycled from ∆τ = 5×10−3

to 5, to generate an oh-type grid around the body. In general, the maxi-
mum time step is typically be up to hundreds times larger than the mini-

3 Flapping wing C512

Figure 3: Different views of the grid around an aircraft tailplane.

mum. When the time step is at its largest value the linear equation systems
are slightly (or not even) diagonally dominant, and information rapidly dis-
tributes throughout the grid system [3]. This rapid distribution is the mech-
anism that enhances the convergence rate, which is shown by the oscillating
behaviour of the residual and error curves in Figure 2. Immediately after
reaching its maximum value the time step is reset to its minimum value.
This ensures that any instabilities that have occurred while the time step
was large are rapidly decay.

Figure 2 compares the convergence histories between the present scheme
(grid3daf, static grid version) and five other iterative schemes: Jacobi
iterative scheme (grid3djac), point/line Gauss–Seidel scheme (grid3d-
pgs/grid3dlgs) and point/line successive over-relaxation scheme (grid3d-
psor/grid3dlsor) for a fixed number of iterations for the tailplane. These
iterative schemes were commonly employed in the grid generation process
in the last three decades; therefore it is more appropriate to compare them,
instead of more specialised methods such as the multigrid and conjugate gra-
dient methods, to the present scheme. In Figure 2, the maximum residual

3 Flapping wing C513

Figure 4: Body profile of the flapping wing at different stages of the flapping
motion (kt = 360◦ for one full cycle of motion).

is referred to max{|Ri,k|} for all grid points, and the error is computed from
1
N

√
|∆r|2 , where N is the total number of grid points. The tailplane has

a naca 632-615 section [1] with a maximum thickness of 0.15` at 0.341`
from its leading edge, and has a semispan length of 0.72`, where ` is the
chord length measured at the root section of the body. The grid consists
of 61 chordwise points, 31 radial points and 30 spanwise points (15 points
equally spaced along the span and 15 points between the body and farfield
spanwise boundary). The source term in Equation (1) is chosen such that
grid lines are clustered toward the tailplane, as shown in Figures 1, 3 and 5.
The comparison shows that the present scheme is superior to other schemes
compared here, and noting that the error and residual reduce substantially
(oscillating behaviour) whenever the present scheme completed one cycle of
the time step cycling process (Figure 2 shows an example).

When the body moves, the grid around the body is required to be regen-
erated at each time level, since the grid points, especially those close to the
body, move substantially. At each time level, the scheme generates a new

3 Flapping wing C514

Figure 5: Grids generated around a flapping wing at different stages of the
flapping motion (kt = 360◦ for one full cycle of motion).

4 Concluding remarks C515

grid, subject to the new body boundary conditions, by utilising the grid at
the previous time level as a starting state (treating it as an initial grid in a
local sense). If the time step is small, the scheme requires several iterations
to generate the new grid for an error tolerance of 10−8. As an example, a dy-
namic grid system is generated around a rectangular wing of 1.25` semispan
length and with a naca 4418 section [1] (maximum thickness of 0.1806` at
0.2978` from its leading edge). The wing consists of 51 chordwise points with
20 points equally spaced along the span, 11 points allocated to the region
between the wing tip and the farfield spanwise boundary, and 31 points in
the radial direction. The wing flaps harmonically as shown in Figure 4, and
Figure 5 shows the generated grids around the body at different stage of the
flapping motion cycle. The plots clearly show that the generated grids are
smooth and clustered towards the wing, and that the grid smoothly changed
to accommodate the new wing boundary.

4 Concluding remarks

A system of Poisson’s equations and a grid stacking technique are employed
to generate a structured oh-type grid around a three dimensional body in
motion. The scheme incorporates a method of false transients and an approx-
imate factorisation technique, where a variable time steps cycling process is
used. The computational example for the aircraft tailplane shows that the
scheme is significantly faster in reaching convergence to the required accu-
racy than all other numerical schemes considered in the comparison study.
For a dynamic grid system around a moving body, only several iterations
are required to regenerate a smooth and accurate boundary fitted grid at
each new time level, as illustrated by the example of a flapping wing motion.
The present method is suitable for automatic grid generation computer code,
since a correct final grid system can always be obtained independent of the
form of its initial grid.

References C516

Acknowledgements We thank rmit University, Melbourne, Australia,
for supporting this research work through a research grant, rmit Emerging
Researcher Grant 2007.

References

[1] Abbott, I. H., and von Doenhoff, A. E., Theory of Wing Sections,
Dover Publications Inc., New York, USA, 1959. C513, C515

[2] Catherall, D., Optimum Approximate-Factorization Schemes for Two
Dimensional Steady Potential Flows, AIAA Journal, 20, 8, 1982, pp.
1057–1063. C507

[3] Gear, J. A., Time Marching Approximate Factorization Algorithm for
the Modified Transonic Small Disturbance Equation, Research Report
Number 6, Department of Mathematics, RMIT University, Melbourne,
Australia, Feb. 1996, 11 pages. C511, C512

[4] Hoffmann, K. A., Computational Fluid Dynamics for Engineers,
Engineering Educational System, Texas, USA, 1989. C506, C507

[5] Ly, E., Improved Approximate Factorisation Algorithm for the Steady
Subsonic and Transonic Flow over an Aircraft Wing, in Proceedings of
the 21st Congress of the International Council of the Aeronautical
Sciences (ICAS98), AIAA and ICAS, Melbourne, Australia, Sep. 1998,
Paper A98-31699. C507, C509

[6] Ly, E., and Gear, J. A., Time-Linearized Transonic Computations
Including Shock Wave Motion Effects, Journal of Aircraft, 39, 6,
Nov./Dec. 2002, pp. 964–972,
http://mams.rmit.edu.au/3j9p7fh8xj2o1.pdf C507, C509, C510

http://mams.rmit.edu.au/3j9p7fh8xj2o1.pdf

References C517

[7] Ly, E., and Nakamichi, J., Time-Linearised Transonic Computations
Including Entropy, Vorticity and Shock Wave Motion Effects, The
Aeronautical Journal, Nov. 2003, pp. 687–695. C507

[8] Ly, E., and Norrison, D., Automatic Structured Grid Generation by an
Approximate Factorisation Algorithm, Mathematics and Statistics
Research Report 2006/02, School of Mathematical and Geospatial
Sciences, RMIT University, Melbourne, Australia, July 2006, 28 pages,
http://mams.rmit.edu.au/1354efwypnzn.pdf C506, C508, C510

[9] Ly, E., and Norrison, D., Automatic Elliptic Grid Generation by an
Approximate Factorisation Algorithm, ANZIAM Journal, 48
(CTAC 2006), pp. C188–C202, July 2007. http://anziamj.austms.
org.au/ojs/index.php/ANZIAMJ/article/view/48 C510

[10] Ly, E., and Norrison, D., Generating Elliptic Grids in Three
Dimensions by a Method of False Transients, ANZIAM Journal, 49
(EMAC2007), pp. C170–C183, Nov. 2007. http://anziamj.austms.
org.au/ojs/index.php/ANZIAMJ/article/view/313 C506, C507,
C511

[11] Mathur, J. S., and Chakrabartty, S. K., An Approximate Factorization
Scheme for Elliptic Grid Generation with Control Functions,
Numerical Methods for Partial Differential Equations, 10, 6, 1994,
pp. 703–713. C506, C507

[12] Thompson, J. F., Thames, F. C., and Mastin, C. W., Boundary-Fitted
Curvilinear Coordinate Systems for Solution of Partial Differential
Equations on Fields Containing any Number of Arbitrary
Two-Dimensional Bodies, NASA Contractor Report CR-2729,
Washington DC, USA, July 1977, 253 pages. C506

[13] Warming, R. F., and Beam, R. M., On the Construction and
Application of Implicit Factored Schemes for Conservation Laws, in
SIAM-AMS Proceedings, 11, USA, 1978, pp. 85–129. C509

http://mams.rmit.edu.au/1354efwypnzn.pdf
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/48
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/48
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/313
http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/313

References C518

Author addresses

1. E. Ly, School of Mathematical and Geospatial Sciences, Science,
Engineering and Technology Portfolio, RMIT University, Melbourne,
Victoria 3001, Australia.
mailto:eddie.ly@rmit.edu.au

2. D. Norrison, School of Mathematical and Geospatial Sciences,
Science, Engineering and Technology Portfolio, RMIT University,
Melbourne, Victoria 3001, Australia.

mailto:eddie.ly@rmit.edu.au

	Introduction
	Grid generation process
	System of Poisson's equations
	Numerical solution procedure

	Flapping wing
	Concluding remarks
	References

