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Modelling heat transfer in steel coils
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Abstract

During annealing, heat transfer within steel coils is complicated by
the different conductivity in radial and axial directions due to small air
gaps between the steel layers in the radial direction. Here an analytic
solution augmented with numerical calculations illustrates some of the
fundamental behaviour of the system, including calculations of the
time lag. The beneficial effects of additional heating on the curved
surfaces are shown.
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1 Introduction

Annealing of steel coils is done to alter the crystal structure of the steel which
can become brittle during cold rolling. It requires heating the coil to a high
temperature (≈ 700◦C) and maintaining this temperature for a significant
period of time. Initially, the entire coil must be raised to the prescribed
temperature and so the duration of the initial heating is determined by the
part of the coil which is slowest to heat: the cold point. We call the time
required to heat the cold point to the annealing temperature the time lag.
Overall the aim is to heat the coil for the minimum possible time to save
energy costs. However, if the cold point is insufficiently annealed then it is
expensive to reprocess the steel coil. Hence accurate prediction of the correct
annealing time is desirable.

This research arose from a recent Mathematics in Industry Study Group
problem, held at University of Wollongong in February 2008. This project
was sponsored by New Zealand Steel and concerned the specific character-
istics of a Uniflow Annealing System (uas) furnace as used in Auckland.
The proceedings of that meeting [7] provide more details of the modelling
of the process and an introduction to our analytic approach. Here we fur-
ther explore the properties and behaviour of the system as predicted by the
model and compare the existing heating process to one with additional heat-
ing on the curved surfaces. Calculations of the time lag—the time to reach
a required temperature—are also given.
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Figure 1: Schematic of the coil as nested cylinders.

2 Model of the steel coil

The coils are formed by cylindrically wrapping a sheet of steel about an
armature which is afterwards removed. They are hollow cylinders of approx-
imately 10–20 tonnes in weight, a metre in height and diameter, and with
a steel thickness of 0.4–3mm. A schematic of the geometry is given in Fig-
ure 1. Calculating the heat transfer within the coil is complicated by air
gaps between the layers of steel; there is reduced conductance due to contact
surface roughness even where the layers are in direct contact [9]. There is a
dependence on the winding coil tension, which varies with curved position,
and the heat expansion of the coils [10]. The air gap is also larger at the
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vertical ends of the coil due to nonuniformity of the rolling process.

A common approach [2, 4, 6, 10, 11, 12] assumes that, since the number
of layers is large, the interior of the coil can be treated as a uniform material
with anisotropic conductivity: the radial conductivity being dependent on
position. Taking r and z as radial and vertical spatial coordinates, t as time,
T(r, z, t) as temperature, cp(T) as heat capacity, ρ(T) as steel density, and
kr(r, z, t) and kz radial and vertical conductivities, we have the anisotropic
diffusion equation

∂(cpρT)
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krr
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The vertical conductivity kz is usually assumed to be the conductivity of
steel ks but finding an appropriate relationship for kr(r, z, t) is more chal-
lenging [10]. For the present model we do not analyse all the possible influ-
ences upon kr which include winding tension [3], contact resistances [9] and
thermal expansion [10]. Rather, we present solutions for constant conduc-
tivities which gives the dominant behaviour and estimates of heating times.
Additionally these solutions provide checks of more complicated numerical
schemes.

We consider three sets of boundary conditions. In the uas furnace each
coil is placed upon its flat end on a perforated metal sheet and heated by
a combination of direct radiation from above and conduction from hot gas
moving around the coil. As argued by McGuinness et al. [7], a simple model
for this system imposes the ambient gas temperature on the flat top and base
of the coil to allow for rapid effective heating by radiation and conduction. In
contrast, the curved cylindrical surfaces are believed to be subject to Newton
heating from the hot gas. We also consider alternative scenarios where the
curved surfaces are more effectively heated allowing them also to be modelled
as being at the imposed ambient temperature.
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3 Linear solution

Here we investigate analytic solutions for linear heat transport within a coil
modelled as a homogeneous hollow cylinder with anisotropic heat conduc-
tance. The cylinder is defined radially for r ∈ [a, b] and vertically for z ∈
[0, 1] (compare with Figure 1). Assuming constant values of Dr = kr/(ρcp)

and Dz = kz/(ρcp), and denoting the temperature of the external gas Tg and
the initial temperature of the coil T0, Equation (1) simplifies to
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= Dr

1

r

∂

∂r

(
r
∂T

∂r

)
+Dz

∂

∂z

(
∂T

∂z

)
(2)

with
T(r, z = 0, t) = T(r, z = L, t) = Tg , T(r, z, t = 0) = T0 . (3)

We consider three possible boundary conditions for the curved surfaces, re-
ferred to as bc1–bc3:

bc1:

[
kr
∂T

∂r
−H(T − Tg)

]
r=a

=

[
kr
∂T

∂r
+H(T − Tg)

]
r=b

= 0 , (4)

bc2:

[
kr
∂T

∂r
−H(T − Tg)

]
r=a

= [T − Tg]r=b = 0 , (5)

bc3: [T − Tg]r=a = [T − Tg]r=b = 0 , (6)

where H [J/m2/s/K] is the heat transfer coefficient for Newton heating.
These boundary conditions correspond to different combinations of Newton
heating and imposed temperatures on the inner and outer curved surfaces.
Thus bc1 corresponds to the situation in the uas furnace studied by McGuin-
ness et al. [7], with Newton heating on both curved surfaces. For bc2 the
outer curved surface is maintained at ambient gas temperature as might be
achieved with additional direct radiant heating. The condition bc3 arises if
the entire external surface of the coil is subject to an imposed temperature.

Equations (2–6) are re-scaled

t = t0τ , r = br∗, z = Lz∗, u =
T − Tg

T0 − Tg
, (7)
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where r∗, z∗, τ and u are the nondimensional variables. The time scale is
chosen as t0 = L2/Dz . For convenience, we drop the ∗ notation, assign
relative diffusivity D = DrL

2/Dzb
2, set h = Hb/kr and now use α = a/b ∈

[0, 1] to represent the ratio of original lengths. The new nondimensional
system is

∂u

∂τ
= D
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)
+
∂2u

∂z2
, (8)

u(r, z = 0, τ) = u(r, z = 1, τ) = 0 , u(r, z, τ = 0) = 1 . (9)

The boundary conditions, Equations (4)–(6) are replaced by the appropriate
conditions ∂u

∂r
= ±hu or u = 0 .

The solutions are found using separation and Sturm–Liouville theory.
Separating u as u(r, z, τ) = R(r)Z(z)T(τ) gives

Z ′′ = µZ , Z(0) = Z(1) = 0 , (10)

T ′ = (Dω+ µ)T , (11)

R ′′ +
1

r
R ′ = ωR . (12)

with ω and µ the eigenvalues. The eigenfunctions are

Z = sinnπz , µ = −(nπ)2, n = 1, 2, . . . , (13)

R = C0(λr) ≡ J0(λr) + BY0(λr), ω = −λ2, (14)

T = exp{−[Dλ2 + (nπ)2]τ}, (15)

where B is a constant, and J0 and Y0 are Bessel functions. The full solution
is

u(r, z, τ) =

∞∑
n=1

∞∑
m=1

Amne
−[Dλ2

m+(nπ)2]τ sinnπzC0(λmr). (16)

The constants Amn are found using Sturm–Liouville orthogonality to be [1,
ch 9,11]

Amn =

∫1
0

sin(nπz)dz∫1
0

sin2(nπz)dz

∫1
α
rC0(λmr)dr∫1

α
rC20(λmr)dr

(17)
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where C0 and C1 are defined, as in Equation (14), by

C0(x) = J0(x) + BY0(x), (19)

C1(x) = J1(x) + BY1(x). (20)

Note that C21(x) ≡ [C1(x)]
2.

The dominant behaviour of Equation (16) is given by the leading eigen-
values λ1 and π and their corresponding eigenfunctions. The eigenvalues λm
and the constant B in Equation (14) are still to be determined.

For bc1, R ′(α) = hR(α) and R ′(1) = −hR(1), giving

− λJ1(λα) − BλY1(λα) − hJ0(λα) − hBY0(λα) = 0 , (21)

−λJ1(λ) − BλY1(λ) + hJ0(λ) + hBY0(λ) = 0 . (22)

The infinite number of values for λ = λm , m = 1, 2, . . . , occur when Equa-
tions (21) and (22) have a consistent solution for B; that is, when∣∣∣∣ λJ1(λα) + hJ0(λα) λY1(λα) + hY0(λα)

−λJ1(λ) + hJ0(λ) −λY1(λ) + hY0(λ)

∣∣∣∣ = 0 , (23)

which is solved numerically for λm. Equation (21) gives

B = −
hJ0(λ) − λJ1(λ)

hY0(λ) − λY1(λ)
. (24)

Similarly for bc2, R ′(α) = hR(α) and R(1) = 0 giving∣∣∣∣ λJ1(λα) + hJ0(λα) λY1(λα) + hY0(λα)

J0(λ) Y0(λ)

∣∣∣∣ = 0 , (25)
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while for bc3, R(α) = R(1) = 0 giving∣∣∣∣ J0(λα) Y0(λα)

J0(λ) Y0(λ)

∣∣∣∣ = 0 . (26)

For both bc2 and bc3, B = −J0(λ)/Y0(λ) .

These exact solutions have been checked using an Euler time-step finite
different numerical scheme written in matlab. Second order central differ-
ences were used at all internal points with fictitious points outside the domain
for derivative boundary conditions, hence allowing second order accuracy on
the boundary. Care was taken to ensure the time step remained within
stability limits. The solution was found accurate for a range of parameter
values. In general, sufficient accuracy is achieved with a spatial discretisation
of 21 points in both r and z directions. This numerical solution was used as
a verification of our analytic results, as well as a tool for solving more com-
plicated heat transfer scenarios which are the subject of further research; for
example, when the radial diffusivity is a nonlinear function.

Of interest is the time taken for the cold point in the coil to reach a
critical temperature. Continuing to work in scaled units we denote this time
and temperature by τc and uc, respectively. They are found numerically
by solving Equation (16) implicitly for τ with u = uc at the cold point
position: z = 1/2 and r = rc . The cold point position is estimated by
finding the extremum of the leading eigenfunction C0(λ1r), thus rc satisfies
C1(λ1rc) = 0 . Numerical tests confirm that for large times this rc is indeed
at the cold point.

4 Results

Here, realistic values have been used with scaled parameters α = 0.33 , h = 2

and D = 1 . Dimensionally we have a = 0.25m, b = 0.75m, L = 1.1m,
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Figure 2: Leading eigenfunctions C0(λ1r), Equation (14) scaled to a maxi-
mum of unity, for the three types of boundary conditions.

cp = 1169 J/kg/K, ρ = 7854 kg/m3, ks = 30W/m/K, andH = 3.8W/m2/K.
Figure 2 shows the leading eigenfunction C0(λ1r) for the three boundary con-
ditions. This eigenfunction has the same approximate shape as the rescaled
solution u(r, z = 0.5, τ) for large enough time, and predicts the position of
the cold point—the extremum of the eigenfunction. As expected, with bc2
the eigenfunction is far more asymmetric than with bc1 and bc3, producing
a cold point close to the inner radius.

Figure 3 shows the scaled temperature at the cold point as a function of
time. Also shown is the critical temperature uc and the intersection points
which give the time lag τc. Note that with our scaling the temperature is
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Figure 3: Cold point temperature as a function of time for the three types
of boundary conditions.

cooling from u = 1 to u = 0 . The value uc = 0.05 corresponds with an
actual temperature T for which the coil has increased from T0 by 95% of the
difference between T0 and Tg. As expected bc1, corresponding to Newton
cooling on the curved surfaces, leads to the slowest decline in temperature.
As shown by McGuinness et al. [7], the Newton cooling boundary condition is
the limiting factor in the heat transfer, despite the large outer curved surface.
With this boundary condition the heat transfer is vertically dominated hence
making time lag relatively independent of α and D.

Figure 4 shows the time lag, τc, as a function of the relative diffusiv-
ity for the same critical temperature value uc = 0.05 . The radial diffu-
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sivity is a complex function of steel layer thickness, tension between layers
and thermal expansion. Whilst this dependence is the subject of further
research [5], the effective radial diffusivity is within the range D = 0.2–1
shown on this graph [8]. (The radial conductivity will be smaller than the
steel conductivity, and hence the vertical conductivity, because of the air
gaps between layers.) Figure 4 illustrates the smaller dependence of time lag
on D with bc1, which arises because heat transfer is vertically dominated.
Note that D = DrL

2/Dzb
2 which is dependent on cylindrical dimensions as

well as effective radial diffusivity, Dr. Results presented here are for a fixed
h = Hb/kr = 2 . Thus interpretation of the results with respect to dimen-
sional variables must be done with care: if kr changes then both h and D
would change.

If annealing operators are able to adjust their operating system so that
the different type of boundary conditions are appropriate, this may come at
an additional cost. Figure 4 provides a guide as to whether modifications
could be cost effective. Consider the possibility of adding radiant heaters
directly heating the coil through its outer curved surface (corresponding to
bc2). If D = 0.1 the time lag for bc1 is τ = 0.3239 reducing to τ = 0.3151

for bc2, only a 2.7% reduction in time; thus the additional cost required to
change the boundary conditions is unprofitable in this case. However, for
D = 1 the reduction in time lag is from τc = 0.2630 for bc1 to τc = 0.1761

for bc2, a 33% reduction in time, possibly making this change cost effective.

5 Conclusion

The results presented here are a simple first model of the annealing process,
but do allow estimates on the heating time to be calculated for three differ-
ent applicable boundary conditions. The time lag, the time for the coldest
point to reach a critical temperature, is of importance to an annealing oper-
ator. Determining the dependence of this time lag on coil dimensions, radial
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Figure 4: Time lag versus diffusivity D for the three types of boundary
conditions.
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diffusivity, gas temperature, and boundary conditions will help the steel in-
dustry to optimise production. Our further work will include models of the
air gap, contact resistance, coil tension, coil expansion, anisotropic boundary
conditions and incorporation of results shown by Hickson et al. [5].
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