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A springs and masses model for determining
the lowest risk path in a threat environment
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Abstract

Finding the safest path through a threat environment is paramount
for the military. This work investigates the use of a springs and masses
model for battlefield applications. In particular, we examine the use of
this model in scenarios when the locations of the threat environment
are not necessarily known, that is, ‘pop-up’ threats. The strengths
and weaknesses of this approach are discussed including the potential
for using this model to solve safe path problems in real-time, which
would allow it to be used as a decision making tool for both field and
onboard system applications.
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1 Introduction

On the battlefield, travelling on a safe path or not can be the difference
between life and death. Choosing the safest path relies on a commander’s
training and intuition; however, the dynamic and complex nature of the
modern battlefield make these decisions difficult. Furthermore, autonomous
systems have no commander to make these decisions. In these situations
it is essential to have the assistance of a safest path determining model to
maximise the chance of survival for the people or systems involved [9].

There are many models used to determine safe paths through threat environ-
ments; however, few models are efficient at finding safe paths when the threat
environment is constantly changing. This article investigates the determina-
tion of optimal routes for a single vehicle traversing a threat environment
(such as a mine field) from its base to its mission objective using a springs
and masses model. Previous researchers [2, 8] examined the use of this model
when the threat locations are known.

Here we extend the investigation by considering ‘pop-ups’. Pop-ups are
threats which appear while travelling through a threat environment and were
not considered when initially determining the safest path. If the pop-up is
close to the safe path, then the effect on the safest path can be dramatic.
Quickly determining the new safest path is vital so that the threat can be
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minimised [2]. Due to the dynamic nature of the battlefield, pop-up threats
can be expected often. This work examines how a springs and masses model
is able to rapidly adapt to changes in the threat environment due to pop-
ups. We also compare different solvers in matlab R© to determine the most
computationally efficient.

The springs and masses model presented in this work can be further extended
to be either a complex and realistic simulation or a real-time decision making
tool. Given the limited computational power available on the battlefield, a
single application that performs both tasks is not expected in the immediate
future. Further work for both roles is presented.

2 Current approaches

There are numerous continuous and discrete safe path determining models.
Previous work examined calculus of variations [8, 9, 10, 11, 12], Voronoi di-
agram search [1, 2, 7], network flow [9, 12], grid [4] and probability map [3]
models. With the exception of calculus of variations, these models discre-
tise the region and use discrete optimisation techniques to find the safest
path. Discrete models do not adapt well to dynamic environments because
when the threat environment changes, the safe path must be entirely recal-
culated. This is very inefficient, especially considering much of the work is
in recalculating threat costs for path segments that are outside the range of
the vehicle [4]. The calculus of variations approach also requires the safest
path to be entirely recalculated when the threat environment changes. Ad-
ditionally, this approach is slow to converge on a solution and is not robust
in threat environments with many threats [8, 11, 12].
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3 Springs and masses model

The springs and masses model is a continuous in space method for finding
safe paths through threat environments. The model uses a series of masses
connected by springs in a two dimensional plane. Threats repel the masses
with a force that is proportional to an inverse power of distance [2]. The
inverse power depends on the type of threat. For example, the inverse power
for a mine threat is two [8] while for a radar it is four [4]. Threat is assumed
to be the same in all directions and for this work all threats are assumed to
have the same threat level, although this sameness is not required in general.
The equations of motion for a spring, mass and damper system are used
to determine four ordinary differential equations (odes) for each mass in
the series, which govern the motion of the masses towards the steady state
solution. Let x and y be the usual two-dimensional cartesian coordinates
and u and v the velocities in the x and y directions respectively. The odes
for the ith mass in the series being repelled by N threats are of the form

ẋi = ui , (1)

ẏi = vi , (2)

u̇i =

N∑
j=1

Rj(xi − aj)

dij
r+1

+ 2ζωn(ui−1 + ui+1 − 2ui) +ω2
n(xi−1 + xi+1 − 2xi),

(3)

v̇i =

N∑
j=1

Rj(yi − bj)

dij
r+1

+ 2ζωn(vi−1 + vi+1 − 2vi) +ω2
n(yi−1 + yi+1 − 2yi),

(4)

where Rj is the threat level for the jth threat which is located at (aj,bj),
dij is the distance of that threat to the mass, and r is the inverse power
of the threat type [8]. The spring, mass and damper system has a natural
frequency, ωn, and damping ratio, ζ. The second and third terms in each
of equations (3) and (4) represent the force balance of spring and repulsive
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A B

Figure 1: A schematic diagram showing an example of the springs and
masses model. The safe path around the threat (red circle) between the
start (A) and end (B) points (black squares) is indicated by the springs (blue
coils) which connect two masses (black diamonds). The green arrows show
the forces acting on the masses.

forces. If there are M masses, then the system consists of 4M first order
odes. This system of first order odes is solved using numerical techniques
(in this case using matlab R©) to find the steady-state solution [2, 8]. The
final locations of the masses are the waypoints on the safest path through
the threat environment. A schematic representation of this model is shown
in Figure 1. The springs and masses model offers improvements over other
models; however, it does have some drawbacks, which we outline in the next
section.

The main advantage of the model is that it handles dynamic environments
efficiently. The computational time required to solve a system of odes to
steady state depends on how close the initial values are to the final solution.
If the initial values are close, then the computational time is reduced. Using
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the springs and masses model allows us to recycle the previous safe path as
the initial conditions for a changed threat environment, which reduces the
computational time. This potentially means that once the initial path is
found, any changes to the path can be computed in real-time.

3.1 Implementation issues

Total threat Total threat is not explicitly calculated by this model. Since
the location of each mass is known and each is connected by straight springs,
the total threat can be found by numerically integrating the threat between
each mass and finding the sum of these segments.

Range input The safe path is not useful if it exceeds the range of the
vehicle that must travel along it. The length of the path is not explicitly
an input to the springs and masses model. However, making range an input
can be achieved by calculating the path length during each iteration of the
integration. The natural frequency of the system is dynamically changed so
that, as the length of the path increases, the spring constant increases, and
therefore the spring force becomes much larger. This results in the range
not exceeding a given maximum. For this work the natural frequency was
adjusted using the equation

ωn = −1− log

(
lactual

lmaximum

)
, (5)

where lactual is the calculated path length for the iteration and lmaximum is
the maximum allowable vehicle range.

Local minimums The solution generated by the model is not always the
global minimum threat path because the path may settle in a local threat
minimum if the initial conditions are sufficiently close to it. For example, a
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threat environment with two threats will have three local minimum threat
paths: one which keeps both threats on the left, one which keeps both threats
on the right, and one which passes between the two threats. To determine
which is the global minimum the path can be calculated multiple times with
different initial conditions. If there are multiple solutions, then the total
threat for each path is calculated to determine which path is the safest.
Intelligent selection of initial conditions can also assist with finding the global
minimum. If there is a human ‘in the loop’, then their intuition is used to
input a guess of where the safe path will be. If there is no human ‘in the loop’,
then starting with the masses in random locations throughout the region will
reduce the probability of finding local minimums.

Bunching Ideally there should be more masses in areas of high threat to
provide better resolution. However, in this model we find that masses bunch
together in areas of low threat because the repulsive force of the threats is
greater than the spring force. We overcame this by dynamically adjusting the
natural frequency based on threat level. If a mass is in an area of high threat,
the spring force should be increased by increasing the natural frequency.
This differs from the implementation of maximum vehicle range because the
natural frequency is changed locally for an individual mass, not globally for
the whole chain of masses.

3.2 Improving the efficiency

In order to optimise the springs and masses model, several different ode and
non-linear equation (nle) solvers were compared to find the fastest method
of solving the large system of odes generated by the model. Many of these
solvers are specific to matlab R©, so the applications for use in the field
are limited. However, the analysis gives an insight into the best methods of
solving this large system of odes. The solvers that were tested were the stan-
dard matlab R© solvers ode45, ode23, ode113, ode15s, ode23t and ode23tb
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(ode23s was excluded because it was significantly slower than the others).
Details of these solvers can be found in the documenation for matlab R© [6].
An Euler time-step solver was also tested, as well as two nle solvers: broy

and mmfsolve, both of which use the quasi-Newton Broyden method and are
available freely from matlab R© Central [5]. Full details of these methods
including how the initial Jacobian matrix is constructed is available from
matlab R© Central [5].

The solvers were tested in randomly generated threat environments. The
initial conditions were generated by randomly placing 100 masses in a rect-
angular region around the fixed start and finish points. Each of the solvers
then solved the identical problem and the time taken for each to find a
steady-state solution was measured. Steady-state was found by measuring
the sum of the speeds for all the masses until it was below a given threshold,
100 for this work. This process was repeated 933 times, each with a unique
threat environment and initial conditions. No solution was checked for sensi-
ble output; the times measured were times taken to generate an answer, not
necessarily the answer. The nle solvers sometimes produce unstable steady-
state solutions to the system if the initial guesses are not close to the final
stable solution, so this certainly means that ‘incorrect’ answers were gener-
ated. In extreme cases of bad initial conditions the nle solvers produced
an error and failed. Of the 933 trials, all nine solvers generated solutions
in 803 trials. The times for each function in each trial were converted to
a fraction of the time taken for the broy function in that particular trial.
This was done to allow for direct comparison between trials where the ini-
tial conditions were closer to the final solution than others, which affects the
computational time. The average for each function over all the trials was
then taken. The results showing the comparisons between different solvers
are in Table 1.

Broy was determined to be significantly faster than other solvers; however,
Broy will not always find stable steady state solutions. While a fast solution
is desirable when in the field, it absolutely must be the correct solution every
time. The second fastest solver was ode113. While this solver is slower than
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Table 1: Computational time of different solvers compared to broy.
Solver Relative

time
ode23tb 5.36
euler 5.13
ode23t 4.13
mmfsolve 2.97
ode15s 2.70
ode23 2.51
ode45 2.35
ode113 1.76
broy 1.00

broy, ode113 will always produce a stable steady state solution. A balance
was found by using ode113 first to find good initial conditions which were
then used by broy to solve for the required stable solutions.

3.3 Results

Figure 2 is an example solution. In this example 20 randomly placed threats
were positioned in the domain and the safe path determined from points
A to B. A pop-up threat is chosen randomly to be near the safest path at some
random time (point M on the figure). The new safe path is then determined.
This figure shows that the emergence of a pop-up threat can significantly
change the safe path. The new safe path passes through different threats,
showing that the model can find global minimum threat paths. Clearly the
springs and masses model is capable of finding safe paths and adapting to
changes in the threat environment.
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Figure 2: An example problem. The initial safe path (blue dashed line) is
calculated based on the known (random) threat environment of 20 threats
(blue circles) between two fixed points (black squares A and B). Also shown is
the scenario of a vehicle that has travelled along this path to black square M
when a new threat appears (red circle P). The new safe path (red dot-dashed
line) is calculated using the previous safe path as the initial conditions for
the masses. The code is completely automated and requires no human input.
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3.4 Further work

There are many ways to improve the model’s usefulness for military applica-
tions. As well as refining the model, this work has implemented additional
fixed points. Fixed points are points that must be travelled over. Some mod-
els are limited to only a start and end point, so the addition of these extra
fixed points makes the springs and masses model more useful for military
applications. The implementation essentially involves having a mass that is
not moved by spring forces or repelled by threats. This is done by setting
both the accelerations and velocities for that mass to zero. When the system
of odes is solved, the corresponding mass does not move.

The springs and masses model presented in this work is by no means the per-
fect solution to all path determining problems. There are still many improve-
ments that can be made to the model to increase its usefulness in real-world
applications. Some of the improvements that we are currently examining are
‘moving’ fixed points and a real-time model. Moving fixed points are way-
points that simulate situations such as moving targets or moving airfields
(for example, an aircraft carrier). Furthermore, the model must also provide
solutions in near real-time to enable it to be used as a decision making tool by
commanders rather than a tool for checking the decisions that have already
been made.

4 Conclusion

Finding the safest path through threats is paramount on the battlefield and
can be the difference between life and death. The modern battlefield is a
complex environment, so there is a need for safe path determining models
for applications both with and without a human ‘in the loop’.

The springs and masses model uses the equations of motion of masses con-
nected in a chain by springs to form a system of odes which are then numer-
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ically solved. The closer the initial conditions are to the final solution, the
less the computational time that is required to solve the problem to steady-
state. As a result, the model can recycle an old safe path as the initial
guess for a new safe path if the threat environment changes. This is very
important for adapting to pop-up threats and means that new safe paths can
be found quicker using this approach than other techniques, such as spatial
discretisation models.

The total threat of a path has been incorporated into the model, and this has
been used to distinguish between different solutions to find the safest path.
Further improvements that have been implemented include the addition of
range as an input to the model to account for vehicle limitations, and pre-
venting masses from bunching together in areas of low threat by adjusting
the spring forces acting on each mass based on the threat level.
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