
ANZIAM J. 50 (CTAC2008) pp.C189–C203, 2008 C189

Efficient solvers for incompressible fluid flows
in geosciences

A. Amirbekyan1 L. Gross2

(Received 8 October 2008; revised 16 October 2008)

Abstract

Saddle point problems involving large systems of linear equations
arise in a wide variety of applications in computational science and
engineering. A variety of solvers have been developed for these type
of problems typically with specific applications in mind. We focus
on saddle point problems as they arise from incompressible fluid flow
problems in geosciences. They are characterized through a spatially
variable viscosity when modeling temperature dependencies (for ex-
ample, in Earth mantel convection models) or moving material in-
terfaces (for example, in subduction zones simulation and numerical
volcano models). We overview some of the iterative techniques used
and discuss suitable preconditioning techniques. We discuss the im-
plementation of the schemes using the python module Escript and
compare the efficiency of these schemes when applied to convection
models on a parallel computer.

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1449
gives this article, c© Austral. Mathematical Soc. 2008. Published November 3, 2008. issn
1446-8735. (Print two pages per sheet of paper.)

http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1449

Contents C190

Contents

1 Introduction C190

2 Uzawa solver C192

3 Preconditioner for Schur complement C193

4 Implementation C193

5 Experiments C196

6 Conclusion C201

References C201

1 Introduction

Finite element and finite difference discretizations of the Navier–Stokes equa-
tions for incompressible flow lead to equations of saddle point type, which
is a solution of the following operator problem for u ∈ V and p ∈ Q with
suitable Hilbert spaces V and Q:[

A B

B∗ 0

] [
u

p

]
=

[
f

g

]
(1)

where A is coercive, self-adjoint linear operator in V , B is a linear operator
from Q into V and B∗ is the adjoint operator of B. f and g are given elements
from V and Q respectively. In most cases, equation (1) is given in the form

a(v, u) + b(v, p) = 〈f, v〉, (2)

b(u, q) = 〈g, q〉. (3)

1 Introduction C191

for all v ∈ V and q ∈ Q where 〈, 〉 denotes the scalar product in V and Q.
Here b(u, q) = 〈u,Bq〉 and a(u, v) = 〈Au, v〉. If b meets the Ladyzhenskya–
Babuška–Brezzi1 (lbb) condition, the linear problem (1) has a unique solu-
tion (u, p).

We are particularly looking for suitable methods to solve the Stokes prob-
lem with variable viscosity. In this case we have V = H10(Ω)d (H10 is an ap-
propriate Sobolev space), Q = L20(Ω) (set of square integrable L2-functions
on measure space Ω) and

a(v, u) =

∫
Ω

η(vi,jui,j + vi,juj,i)dΩ (4)

b(v, q) =

∫
Ω

vi,iqdΩ (5)

where η is the spatial dependent viscosity with η ≥ ηmin > 0 . Here we
use the Einstein summation convention [10] for convenience. This type of
problems plays a key role in geoscience applications. For instance, in models
for convection in the Earth’s mantel the viscosity becomes a function of the
temperature T in the form

η = η0 exp

[
a

(
1

1+ T
−
2

3

)]
(6)

where η0 = 1 is the viscosity for T = 1
2

. The constant a is called the
Arrhenius number. For the case of the Earth a takes the value of 22 [6, 8].
This value for a produces steep viscosity gradients providing a big challange
for any solver applied to the saddle point problem (1). Notice that a = 0

defines the case of constant viscosity. In this context the external force f is

〈f, v〉 =

∫
Ω

Ra Tv2 dΩ (7)

1This condition essentially says that velosity and pressure spaces cannot be chosen
arbitrary, the link between them, known as lbb or inf-sup condition, is necessary to
guarantee the stability of finite element approximate solution.

2 Uzawa solver C192

where Ra is the Rayleigh number. For the Earth one sets Ra = 106. In
the case that η is constant, the operator A can be simplified to a multiple
of the Laplacean operator. This case has been extensively studied in the
past [3, 4, 9]. We investigate how the results for the case of constant viscosity
can be applied to the case of spatially variable viscosity.

2 Uzawa solver

One possible approach, referred to as the Uzawa scheme [1, pp.154–158] for
solving the saddle point problem (1) is to eliminate the velocity v from the
problem. This is possible if A is invertible. In this case one gets u = A−1(f−

Bp) which when inserted into the second equation leads to the problem

Sp = B∗A−1f. (8)

where S := B∗A−1B is the Schur complement of A. As the Schur complement
is symmetric and positive definite, the problem (8) is solved iteratively using
preconditioned conjugate gradient (pcg) [7] method with the standard inner
product in L2. Section 3 discusses the question of a suitable preconditioner PS
for the Schur complement. Once p has been calculated, v is recovered in a
postprocessor step as u = A−1(f− Bp). The residual rk in the kth iteration
step is

rk = Spk − B∗A−1f = B∗A−1(Bpk − f) = −B∗uk , (9)

with uk = A−1(f − Bpk). So representing the residual as the pair rk =

(uk,−B
∗uk), and then inspecting the first component of the current residual

when terminating the iteration through a stopping criteria, will save the
execution of the postprocessing. When implementing the pcg one needs to
provide a function which returns for a given p an increment to the residual.
This is calculated in the form

(a) Solve Az = Bp ,

(b) Solve q = −B∗z ,
(10)

where the tuple (z, q) is returned.

3 Preconditioner for Schur complement C193

3 Preconditioner for Schur complement

In the Stokes equations, the Schur complement operator S can be precondi-
tioned by 1/η, where η is the viscosity [4]. In this investigation a constant
viscosity is assumed which allows simplification of the operator A to the
Laplacian operator using the incompressibilty condition. The important dif-
ference for us is that in convection models η is not a constant, but spatially
dependent. Unfortunately, this generalization does not allow us to simplify
the operator A to the Laplacian operator using the incompressibilty condi-
tion which is a key in the theoretical investigations. The nature of the spatial
dependency of η affects the overall performace of the model. In particular,
a steep gradient of η will lead to a large deviation from the case of constant
viscoscity in which 1/η provides a suitable preconditioner for S.

In our tests we select the preconditioner p = PSq of the Schur complement
by solving

1

η̃
p = q (11)

where we consider two choices for η̃ namely

• spatially dependent viscosity: η̃ = η

• constant average viscosity: η̃ = (minη+ maxη)/2

In the case of constant viscosity both cases coincide. Notice that in this case
we do not simplify the theoretical operator A to the Laplacian operator.

4 Implementation

We use the escript environment to implement the convection code. In this
section we briefly outline the basic idea of escript [5] and show how to imple-
ment the evaluation step for the Schur complement (10). The escript module

4 Implementation C194

is designed to implement pde based models in python. It uses pde based ter-
minology providing an abstraction layer for spatial discretization methods.
Its key component is a class used to define steady, linear partial differential
equations which are solved using a c/c++ library [2]. The coefficients of
the pde are defined through expressions which are evaluated by the escript
library. The escript library is parallelized for both openmp and mpi using
the the data distribution used by the underlying pde solver library.

The general form of the pde in escript for an unknown vector valued
spatial function ui is

− (Aijkluk,l + Bijkuk),j + Cikluk,l +Dikuk = −Xij,j + Yi . (12)

The coefficients A, B, C, D, X and Y are functions of their location in the
domain, in particular they may depend on solutions of other pdes, previ-
ous time steps or non-linear iteration steps. Moreover, natural boundary
conditions are of the form

nj(Aijkluk,l + Bijkuk) + dikuk = njXij + yi , (13)

where y and d are given functions. Notice that A, B and X are already used
in the pde (12). To set values of ui to ri on certain locations of the domain
one can define constraints of the form

ui = ri where qi > 0 , (14)

where qi is a given function defining a positive value through the locations
where the constraint is applied. With these tools it is very straight forward to
implement the evaluation of the Schur complement S (10) within the Uzawa
scheme. The following python function implements this step:

from escript import *

from escript.linearPDEs import LinearPDE

def evalS(dom, eta, p):

4 Implementation C195

v_pde=LinearPDE(dom)

id=identityTensor4(dom)

v_pde.setValue(A=eta*(id+swap_axes(id,1,2)), \

X=-p*kronecker(dom))

p_pde=LinearPDE(dom)

p_pde.setReductionOn()

z=v_pde.getSolution()

p_pde.setValue(D=1, Y=-div(z))

q=p_pde.getSolution()

return q

This function returns the pressure increment q. The class LinearPDE pro-
vides an interface to the pde defined by (12)–(14). The corresponding values
of pde coefficients are set via the setValue method call. The argument
dom is an escript Domain object defining the domain of the pde including
information on the discretization to be used. eta is representing the viscos-
ity η which may be constant or a spatial function represented as an escript
data object. The call of the setReductionOn method of p_pde switches on
the usage of a reduced polynomial order for the pressure approximation as
required to meet the requirements of the lbb condition. In a similar fash-
ion one implements the application of the preconditioner PA from the Schur
complement in (11):

from escript import *

from escript.linearPDEs import LinearPDE

def evalP_S(dom, eta, p):

pde=LinearPDE(dom)

pde.setReductionOn()

pde.setValue(D=1/eta, Y=p)

return pde.getSolution()

It would be more efficient to keep a copy of the instances of LinearPDE

class and to reuse them in the evalS and evalP_S calls. This allows for the

5 Experiments C196

potential reuse of information such a preconditioners. This is implemented
using a python class. As discussed in Section 2, it is advantageous to represent
the residual in pcg using the pair (v,−B∗v) where v is the current velocity
approximation. In python this is implemented using standard pcg code
and overloading algebraic operations. In this case evalS returns the pair
(z,q). Additional to the saddle point problem for pressure and velocity the
convection model requires the solution of the time-dependent temperature
advection-diffusion problem. In escript and finley a algebraic flux correction
scheme is used which is not discussed here.

5 Experiments

In the first test we investigate the efficiency of the Uszawa scheme when
applied to convection problem. As a measure we use the number of inner
iteration steps needed to reach a fixed tolerance (see Figure 1). As a stop-
ping criterion we use the L2 of the diveregence of the velocity relative to its
H1 norm. For solving the convection problems we proceed as follows.

• Initialize all constant parameters.

• For each time step, using the saddle point solver, compute (v, p).

• Update temperature.2

• Go to the next time step.

In the following figures outer iterations refer to the loop in time steps,
whereas inner iterations refer to the iterations of the saddle point solver.
Table 1 shows the average number of inner iterations required for each step

2In the case of variable viscosity this operation will result in an update of viscosity as
well.

5 Experiments C197

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000

In
ne

r i
te

ra
tio

ns

Outer iterations

"PCG_var_aver"
"PCG_const"

"PCG_var"

Figure 1: Comparison of inner iterations for the cases of constant viscos-
ity (PCG const), spatially dependent viscosity (A=22), but with constant
average viscosity preconditioning (PCG var aver) and spatially dependent
viscosity, with spatially dependent preconditioning (PCG var).

5 Experiments C198

Table 1: Average number of inner iterations with 95% confidence intervals.

pcg spatially dependent viscosity 5 ± 3
pcg constant average viscosity 22 ± 50
pcg constant viscosity 2 ± 1

of saddle point solver. We compared only the first 500 outer iteration steps,
because after that usually each outer iteration requires two inner iterations.

These experiments clearly confirm that using 1/η as an approximation
for the Schur complement is a very effective way to achive fast convergancy
in iterative solvers for saddle point problems. Note that in both cases for
constant and variable viscosities we achived very fast convergence. We tested
this approach also with other solvers, such as gmres, and we got similar
convergence. However, for the case of average viscosity preconditioning we
observed slow convergence (see Figure 1 and Table 1).

In Section 2 each inner iteration involves finding a solution of Az = Bp ,
where A sparse positive definite matrix. Once this solution is found, we use
it for finding the velocity and pressure. One can use any suitable solver for
solving Az = Bp ; we use pcg solver. But the important question is how
exact do we need to solve Az = Bp for our whole saddle point solver in order
to converge in each step? Thus, in the next experiments we observed the
behavior of the saddle point solver depending on the sub-tolerance factor for
Az = Bp .

Table 2 shows how tolerance affects the first time step (of the outer loop).
The tests for the next 100 steps show similar figures. We notice here that
for different mesh sizes the tolerance dependancy is similar. Thus, for pre-
senting the elapsed time versus tolerance graph we show only one of them,
for instance, for the mesh 16 × 64 × 16 (see Figure 2). If the sub-tolerance
exceeds the value 0.1 then the inner iterations do not converge any more.

5 Experiments C199

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1e-12 1e-10 1e-08 1e-06 1e-04 0.01 1

El
ap

se
d

tim
e

fo
r t

he
 fi

rs
t s

te
p

in
 m

in
ut

es

Tolerance Reduction Factor in Logscale

Mesh_16x4x16x16

Figure 2: Elapsed time versus tolerance.

5 Experiments C200

Table 2: Elapsed time in seconds for the first time step for various meshes.

Sub-tolerance 8× 32× 8 16× 64× 16 24× 96× 24
10−1 59.41 544.68 2447.81
10−2 50.23 795.20 3402.54
10−3 75.23 1066.35 5218.70
10−4 93.39 1346.93 6480.15
10−5 109.17 1591.44 7823.06
10−6 121.87 1814.94 8882.58
10−7 133.55 1997.24 9755.85
10−8 144.25 2171.93 10604.85
10−9 153.92 2338.95 11382.37

Table 3: Average number of inner iterations with 95% confidence intervals.

PCG spatially dependent viscosity (A=22) 5 ± 3
PCG spatially dependent viscosity (A=11) 4 ± 2
PCG constant viscosity (A=0) 2 ± 1

The next experiment investigated how the Arrhenius number affects the
convergence behavior of the solver. We have already presented the cases
where Arrhenius number a = 0 (constant viscosity) and a = 22 (variable
viscosity). The interesting question will be how a = 11 affects the solver?
Table 3 presents the experimental results. Here again we compare only the
first 500 outer iteration steps.

6 Conclusion C201

6 Conclusion

Approximations and preconditioning techniques is one of the main techniques
to speed up iterative solvers. For earth mantel convection problems where
we observe variable viscosity, we were able to show empirically that 1/η can
be used as a suitable preconditioner for the Schur complement. We also
presented a way of implemetation using the Python based pde modeling
environment Escript.

Acknowledgements This work uses of infrastructure provided through
the Auscope National Collaborative Research Infrastructure Strategy with
funding from the Australian Commonwealth, the Queensland State Gover-
ment and the University of Queensland.

References

[1] K. Arrow, L. Hurwicz, and H. Uzawa. Studies in linear and nonlinear
programming. Stanford University Press. Stanford, CA, 1958. C192

[2] M. Davies, L. Gross, and H.-B. Muhlhaus. Scripting high performance
earth systems simulations on the sgi altix 3700. In Proceedings of the
7th International Conference on High Performance Computing and
Grid in the Asia Pacific Region, Tokyo, Japan, pages 244–251. IEEE,
2004. doi:10.1109/HPCASIA.2004.1324041 C194

[3] A. de Niet and W. Wubs. Two preconditioners for saddle point
problems in fluid flows. International Journal for Numerical Methods
in Fluids, 54:355–377, 2007. Published online 19 December 2006 in
Wiley InterScience. doi:10.1002/fld.1401 C192

http://dx.doi.org/10.1109/HPCASIA.2004.1324041
http://dx.doi.org/10.1002/fld.1401

References C202

[4] H. Elman and D. Silvester. Fast nonsymmetric iterations and
preconditioning for Navier-Stokes equations. SIAM Journal on
Scientific Computing., 17(1):33–46, 1996. doi:10.1137/0917004 C192,
C193

[5] L. Gross, L. Bourgouin, A.J. Hale, and H.-B. Mhlhaus. Interface
modeling in incompressible media using level sets in escript. Physics of
The Earth and Planetary Interiors, 163(1–4):23–34, 2007.
doi:10.1016/j.physletb.2003.10.071 C193

[6] M. Kameyama, A. Kageyama, and T. Sato. Multigrid iterative
algorithm using pseudo-compressibility for three-dimensional mantle
convection with strongly variable viscosity. Journal Computational
Physics, 206(1):162–181, 2005. doi:10.1016/j.jcp.2004.11.030 C191

[7] A. V. Knyazev. A preconditioned conjugate gradient method for
eigenvalue problems and its implementation in a subspace. In
International Ser. Numerical Mathematics, v. 96, Eigenwertaufgaben in
Natur- und Ingenieurwissenschaften und ihre numerische Behandlung,
Oberwolfach, 1990., pages 143–154. Birkhauser Basel, 1991. C192

[8] L. Moresi, F. Dufour, and H.-B. Muehlhaus. Mantle convection
modeling with viscoelastic/brittle lithosphere: Numerical methodology
and plate tectonic modeling. Journal on Pure and Applied Geophysics,
159(10):2335–2356, 2002. doi:10.1007/s00024-002-8738-3 C191

[9] D. Silvester, H. Elman, D. Kay, and A. Wathen. Efficient
preconditioning of the linearized Navier-Stokes equations for
incompressible flow. J. Comput. Appl. Math., 128(1-2):261–279, 2001.
Numerical analysis 2000, Vol. VII, Partial differential equations.
doi:10.1016/S0377-0427(00)00515-X C192

[10] W Weisstein, E. Einstein summation. From MathWorld—A Wolfram
Web Resource.
http://mathworld.wolfram.com/EinsteinSummation.html C191

http://dx.doi.org/10.1137/0917004
http://dx.doi.org/10.1016/j.physletb.2003.10.071
http://dx.doi.org/10.1016/j.jcp.2004.11.030
http://dx.doi.org/10.1007/s00024-002-8738-3
http://dx.doi.org/10.1016/S0377-0427(00)00515-X
http://mathworld.wolfram.com/EinsteinSummation.html

References C203

Author addresses

1. A. Amirbekyan, Earth System Sciences Computational Center,
The University of Queensland, Australia.
mailto:artak@uq.edu.au

2. L. Gross, Earth System Sciences Computational Center,
The University of Queensland, Australia.
mailto:l.gross@uq.edu.au

mailto:artak@uq.edu.au
mailto:l.gross@uq.edu.au

	Introduction
	Uzawa solver
	Preconditioner for Schur complement
	Implementation
	Experiments
	Conclusion
	References

