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Abstract

We develop a practical, structured analysis of multi-channel time
series measurements where the main interest lies in the coherent tem-
poral fluctuations and spatial structures and their time dependence.
The current approach to most large scale plasma experiments, toka-
mak and stellarators alike, is the quest for the experimental data taken
under optimal conditions for each study. These data are then anal-
ysed in detail and sometimes distributed in a reference database such
as the tokamak profile database of the iter 1D Modelling Working
Group. While these results are important for our understanding of
future fusion devices, they do not provide easy means to support the
evidence based on statistical ensembles. The raw data which are not
accessible to simple search queries, are usually kept in large data repos-
itories. At H-1, we routinely log the global experimental parameters in
a summary database which is stored in a easily accessible database. In
order to facilitate statistical analysis and the search for a wide class of
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magnetic phenomena, we developed a data processing procedure that
reduces the raw signal of an array of Mirnov coils at the H-1 into a
series of feature descriptors in time-frequency space which are stored
in an sql-accessible database, which can be used together with the
summary database.
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1 Introduction

We develop a practical, structured analysis of multi-channel time series mea-
surements where the main interest lies in the fluctuations and spatial struc-
tures. Typical examples from plasma physics research include the spatial ar-
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ray of magnetometers to infer ionospheric activity [12] and so-called Mirnov
arrays on magnetic fusion devices that measure magnetic fluctuations inside
the fusion plasma [5]. While the spectral analysis of these fluctuations is
standard, we propose a tool that additionally captures the evolution and the
time dependence in a highly reduced format, which is then studied using
statistical tools.

We regard the process that transforms the raw data into a higher level trans-
action database of ‘fluctuations’ as a structured analysis. In the developed
flow diagram the modularity becomes apparent and the processing steps are
analysed and evaluated separately. Section 2 presents this top-down view.

The modules involve the separation of spatial structures with the limited
information available. We apply a singular value decomposition (svd) to a
learning set of short time segments in order to identify the dominating spatial
modes of the experiment.

The transaction database is primarily for the study of magnetic instabilities
which are typically wavelike phenomena with fast growth and which occur
over a large range of possible frequencies. The frequency is affected by the
environment parameters such as the electron density and the nature of the
instability and ranges from a few kHz for ion sound waves to several hundred
kHz for Alfven type waves [5].

Therefore, we choose the short time Fourier transform for the time scale
representation. The frequency information is immediately amenable to com-
parison with physical models and the uniform time and frequency resolution
accommodates the above mentioned properties of the magnetic instabilities
of interest.

The final step of the pre-processing, presented in Section 4, is the transfor-
mation of the power spectra into binary information and segmentation into
connected regions within the time-frequency domain.
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Figure 1: The structured analysis from raw data to the transaction database
entries.

2 The analysis structure

The raw data reside in a large data repository and includes the measurements
for each instantiation of the experiment. The magnetic fluctuation data are
recorded from an array of 14 sensors that are distributed poloidally at a
fixed toroidal angle around the plasma at approximately equidistant poloidal
angles from 0 to π. We consider a fixed time window of about 90ms which
corresponds generally to the active phase of the experiment. The data are
sampled at 1MHz.

The steps of the data processing are summarised in a data flow diagram
as shown in Figure 1. The input is the raw data at the top left which is
then successively processed (downwards) and transferred into a transaction
database (to the right).
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3 Mode assignment

In the mode assignment coherent spatial modes are discovered in the data.
Here a two step process is suggested which extends the one step svd ap-
proach describe by Nardone [8]. In the first step a svd is used to extract
the main spatial components or modes of short size, strong power time seg-
ments. These modes are then clustered in a second step to find representative
modes over the whole data set. As the modes of the time signals depend on
the geometrical setup which does not change over the data set, we expect
that similar modes occur for many different time segments. This makes the
second step feasible. It was found that around 90 percent of the energy in
the signal can be represented using these representative modes.

3.1 Singular value decomposition

Mode assignment methods decompose the signal into components of the form
si(x, t) = ui(x)vi(t). Early methods assumed sinusoidal temporal depen-
dence of the modes, that is, vi(t) = ai sin(ωit − φi), and used Fourier
decomposition methods. The svd drops the sinusoidal condition and instead
requires of the temporal parts vi(t) only that they are pairwise orthogonal.
Note that the sinusoidal functions are also pairwise orthogonal if the ωi are
all multiples of a base frequency and in this case the svd recovers the original
modes. The svd also recovers travelling waves with real valued amplitudes
as a sum of two standing waves that are phase shifted by π/2. The applica-
tion of the svd approach was investigated for plasma experiments at jet [8]
and has since been successfully applied to other Tokamak devices [3]. The
svd is widely used in many areas of data analysis and is very popular due
to availability of robust and efficient numerical algorithms.

In order to apply the svd the data are arranged in a nt×nc matrix X where
an element Xij of X is the value at a time step ti and a coil j. The svd
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produces a matrix decomposition of the form

X = USVT . (1)

Here U is an nt×nt orthogonal matrix, S is an nt×nc diagonal matrix and
VT is an nc × nc orthogonal matrix. The svd, that is, the determination
of U, S and V from X is a well studied problem in numerical analysis and
various efficient and robust algorithms are available [4]. The svd does not
require any further knowledge and exists and is unique for any data set.

For ergodic data the product 1
nt
XTX is an estimator for the covariance matrix

of the spatial observation vectors. It follows that XTX = VS2VT provides
a principal component decomposition and the rows of V are the principal
vectors. If one selects the k largest principal values one obtains a best rank k
approximation to the data. For the data studied here it was found that by
only using four to five modes one is able to explain 90 percent of the variation
of the data.

3.2 Mode alphabet

The svd analysis is performed on a ‘training’ set of time series, which is
manually chosen for the existence of strong and coherent signals. Time is
divided into 1ms intervals during which we assume the signals to be quasi-
stationary.

The result of this step is an array of mode vectors that are normalised and
elements of Euclidian space. Distance based clustering of the modes is there-
fore straightforward and we employ k-means clustering as a robust method
of partitioning the ‘mode space’. We use the criterion of finding the ‘kink’ in
the plot of the total within cluster sum of squares versus the cluster number
(as described by Hastie et al. [6, p.470 ff]) to find the optimal number of
clusters.

The typical number is around eight cluster centers and the analysis of the
cross-products shows that usually pairs within correspond to 180 degree



3 Mode assignment C735

Figure 2: Six basis vector alphabet (normalised), the horizontal axis corre-
sponds to coils approximately equispaced from 0 to π and the zero indicated
by dashed lines.

phase shifts. We eliminate these duplicates and the final, automatically ob-
tained, result is a set of six basis vectors in the case of Heliotron J, shown in
Figure 2. For example, the third mode strongly resembles a mode with pe-
riod m = 3. We also note large deviations from pure sinusoids which justifies
the use of svd over Fourier analysis.

3.3 Time scale analysis

This database focuses on mhd instabilities that occur at constant or slowly
varying frequency and on phenomena which are changing in frequency over
many periods of the underlying wave phenomenon. Therefore, the short
time Fourier transform is performed to provide data that are easily compa-
rable to theoretical models. Wavelets would be the obvious candidate for a
complementary database that concentrates on abrupt changes in the plasma
behaviour. The typical power spectrogram P(f, t) is shown in the left panel
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Figure 3: Original power spectrum (left) and segmentation (right) of mode
three. The time on the horizontal axis is measured in ms and the frequency
on the vertical axis in kHz.

of Figure 3. Some of the fluctuations are present more than one mode , but
are usually highly separated in power.

4 Event extraction from spectrograms

The key idea for the reduction of the spectrogram information into a feature
database and the later application to data mining techniques such as associ-
ation rules is to regard the spectrogram matrix of the Fourier amplitudes as
an image matrix in which we capture the spatial structure through the mode
and the temporal structure, that is, frequency, duration and the time depen-
dence, through image processing techniques applied to the spectrogram.

4.1 Binary images

The instabilities occur in a wide range of amplitudes over different experi-
ments, during the same experiment and at various times. This is influenced
by the experimental parameters and physical source of the instability. Con-
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sequently, the histogram of the power spectrum is in general not bimodal.
Meaningful thresholding has to be performed in an adaptive manner, that
is, over local neighbourhoods in the time-frequency domain. The disadvan-
tage is the number of parameters to adjust such as the dimensions of the
neighbourhood which determine the size (in time and frequency) of events
identified and the offset that identifies a pixel as ‘event pixel’.

Therefore we concentrate on frequency slices P(f, ti) at each, fixed time ti.
The multitude of possible sources and physical processing leading to spectral
broadening of the signals do not permit to interpret the spectrum as a line
broadened spectrum encountered in spectroscopy. Nevertheless, we borrow
some of the techniques known as derivative spectroscopy that enhance spec-
tral features [7]. Following the ansatz by Anderssen et al. [1] for higher order
differentiation of non-exact data, we apply a local averaging operator and
calculate the second derivative. Any interval, where ∂2P(f, ti)/∂f

2 < −δ for
a small δ is then identified as ‘event pixels’. This method is robust and relies
only weakly (through the δ parameter to filter background long wavelength
noise) on the amplitude of the events.

4.2 Image segmentation

The watershed transformation [2] is applied to the distance map of the binary
image in order to define the segments.

This approach uses a minimum a priori assumptions (for example, well sep-
arated events in time, as in a slowly spoken alphabet or specific assumptions
about the noise) and is able to disconnect regions that are only connected
through a few pixels due to the limited frequency resolution. We use fast
routines for the computation of the image distance matrix and the water-
shed transform from the ImageMagick [14] project that have been previously
implemented into the EBImage library for use in biological image processing
in R [11].
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The distance map [9] is the transform of the binary image that replaces
each non-zero pixel with the distance to the nearest background (zero) pixel.
The principle of the watershed transform is to consider the negative of the
distance map as a topographic surface. This is then flooded from its minima
and, if we prevent the merging of the waters coming from different sources,
we partition the image into two different sets: the catchment basins and the
watershed lines. The former define the segments.

Prior to the watershed transform, the binary image is ‘smoothed’ with a se-
quential application of the morphological closing and erosion operation [10]
which remove small ‘holes’ in the segments and smoothen the edges. While
all these operations include problem dependent tuning parameters, we found
that the power spectrogram images are sufficiently similar (events are small
bandwidth in frequency) that the single set of parameters that we determined
from a smaller number of shots works for a wide range of experimental con-
ditions and even across the different stellarator experiments. The result of
mode, Fourier analysis and segmentation is illustrated for a single shot in
Figure 3, where the segmentation is displayed in the right panel.

4.3 Event attributes

The extraction of the event attributes is illustrated in the data flow diagram
in Figure 4. The event which is defined by the characteristic function S(f, t)
which is one only for segment pixels.

The zeroth moment is defined by the point product with the original power
spectrum matrix and results in the energy of that segment (see Figure 1).
Since we are concentrating on the time evolution, we divide the temporal
extent of the segment into three equal parts and calculate the centres of mass
as indicated in Figure 4. The three centres serve as points of a quadratic fit.

The results are stored as floating point numbers in an sql-table. As such it
is accessible as metadata and can be quantised if necessary for data mining



5 Summary C739

Figure 4: Flow diagram of calculation of the database entries given a seg-
ment in the spectrogram.

applications.

The marginal distribution of event frequencies is shown in Figure 5 which
shows a bi-modal structure when filtered for high power events. This con-
firms statistically the two dominating fluctuation types previously observed.
The lower frequency events are attributed to ion acoustic of drift-type fluc-
tuations, whereas the higher frequency components which usually also are
highly dependent on density and twist of the magnetic field lines have the
typical scaling of so-called Alfvén type waves.

5 Summary

We developed a structured analysis of multi-channel time series data from
magnetic confinement fusion experiments, that captures spatial and temporal
structure and information on time dependence of plasma fluctuations. For
example, ‘chirps’ with rapid changes of the frequency with δf/f > 10% have
been observed, which indicate events in which there are sudden changes in
plasma parameters. The procedure has already been tested on data from
three different stellarator experiments: H-1 in Australia, Heliotron J in Japan
and Wendelstein-7 in Germany. The analysis is modular and adaptive and
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Figure 5: Histogram of centre frequencies (in kHz) in the event database.

as such applicable to different experiments where the underlying physical
models are sufficiently similar.

Future work will involve a detailed analysis of the database and will extend
the approach to non-equidistant and sparse sampling (in space) beyond the
use of svd techniques.
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