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Numerical solution of the 2D Poisson equation
on an irregular domain with Robin boundary

conditions
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Abstract

We describe a 2D finite difference algorithm for inverting the Pois-
son equation on an irregularly shaped domain, with mixed boundary
conditions, with the domain embedded in a rectangular Cartesian grid.
We give both linear and quadratic boundary treatments and derive 1D
error expressions for both cases. The linear approach uses a five point
formulation and is first order accurate while the quadratic treatment
uses a nine point stencil and is second order accurate. The key aspect
of the quadratic treatment is the use of a suitably chosen directional
derivative to find the second order accurate approximation to the nor-
mal derivative at the boundary.
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1 Introduction

We discuss an embedding method for numerical solution of the 2D Poisson
equation on an irregular domain subject to Robin boundary conditions. The
crucial feature of the formulation is the discretisation of the normal deriva-
tive at the irregular boundary. Our approach for treatment of the normal
derivative is similar to that of Greenspan [5] who uses Taylor expansions
to obtain a second order accurate discretisation. By contrast, Liu, Fedkiw
and Kang [8] develop a first order accurate symmetric discretisation of the
variable coefficient Poisson equation in the presence of an irregular interface.
Bramble and Hubbard [2] present first order and second order discretisations
of the normal derivative, but use of the tangential derivative of the boundary
condition is essential in their formulation. However, the resultant coefficient
matrix is an M-matrix [3] which ensures convergence when iterative schemes
are used to carry out the inversion. More recently, Bouchon and Peichl [1]
developed a second order discretisation of the normal derivative, avoiding the
use of the tangential derivative but still obtaining an M-matrix formulation.
Our present approach also avoids the use of tangential derivative, but does
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not lead to an M-matrix. However, the present scheme is more compact and
also provides a clear extension to the 3D case.

In the present scheme, the Poisson equation is discretised at each grid
point. For grid points away from the boundary the algorithm uses the stan-
dard five point discretisation for the second derivative. For internal grid
points next to the boundary, we use either the Shortley–Weller (quadratic
boundary fit) approach [9] or the linear boundary fit of Collatz [4]. At the
boundaries, correspondingly, the normal derivative is discretised to first order
for the linear case and second order for the quadratic case respectively. To
gain insight into the nature of the overall discretisation error introduced, we
develop explicit error expressions for both boundary treatments for the 1D
case. By contrast with the Dirichlet problem, the higher dimensional Poisson
solver cannot be built by repeated application in each dimension of the 1D
solver, so that the predictive capability of the quantitative error in higher
dimensions using the 1D error expressions is limited. However, we find that
the qualitative behaviour obtained using these expressions is confirmed in
2D numerical tests.

2 Mathematical formulation

Our aim is to solve the Poisson equation for ψ,

∇2ψ = f(x, y) , (1)

on an irregular domain Ω with Robin boundary conditions,

βψn +ψ = γ , (2)

on the boundary ∂Ω and where β = β(x, y) and γ = γ(x, y) are given.
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2.1 2D quadratic boundary treatment

Consider the North-East corner point (i, j) without loss of generality (see
Figure 1). We discretise the Poisson equation at (i, j) subject to boundary
conditions of the form (2) at boundary points 1 and 2. Without loss of
generality, let ∆x = ∆y = ∆ . The second order accurate Shortley–Weller
discretisation at (i, j) is

2

∆2

[
−

1

(1− αE)(2− αE)
ψE +

(
1

1− αE

+
1

1− αN

)
ψi,j −

1

2− αE

ψi−1,j

−
1

2− αN

ψi,j−1 −
1

(1− αN)(2− αN)
ψN

]
= fi,j ,

(3)

where αE and αN determine the distance of the two boundary points from
the grid (see Figure 1).

To complete the formulation, expressions for boundary values ψE and ψN

are required. (Contrast this with the Dirichlet case, where these values are
given.) In order to do this the normal derivative at the boundary must be
approximated. Consider for instance the normal derivative at the Eastern
boundary point (boundary point 1)

ψE
n = ψE

xn
E
x +ψE

yn
E
y , (4)

with nE = (nE
x , n

E
y) the outward normal at that point. Here the x-component

of ψE
n aligns with the grid and therefore is approximated directly in terms

of ψE, ψi,j and ψi−1,j as

ψE
x =

1

∆

[
−
2− αE

1− αE

ψi,j +
1− αE

2− αE

ψi−1,j +
3− 2αE

(1− αE)(2− αE)
ψE

]
. (5)

However, a different approach is needed for the y-component.

The derivative ψ ′
E in the direction of the line passing through the grid

point (i− 1, j− 1) and boundary point 1 is resolved into two components in
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Figure 1: Diagram of a North-East corner point, filled circle are interior
points, open circle are exterior points, the boxes on the solid curve are bound-
ary points, while the point B and C are used temporarily to determine the
second order accurate formulation.
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the x- and y-directions. Substituting the y-component of the derivative at E
in the normal derivative leads to an expression in terms of ψE

n, ψE
x and ψ ′

E,
that is, √

1+ (2− αE)2ψ ′
E =

(
2− αE −

nE
x

nE
y

)
ψE

x +
1

nE
y

ψE
n . (6)

But ψ ′
E is expressed in terms of ψi−1,j−1 and ψE and the value at the tempo-

rary point ψB as√
1+ (2− αE)2∆ψ ′

E = (1− αE)ψi−1,j−1 −
(2− αE)2

1− αE

ψB +
3− 2αE

1− αE

ψE . (7)

Then we eliminate ψB by expanding in terms of ψN and the two internal
values ψi,j and ψi,j−1:

(2− αE)2
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(8)

Combining all these results in the boundary condition at boundary point 1
leads to an equation for ψE and ψN in terms of the four internal values ψi,j,
ψi−1,j, ψi,j−1 and ψi−1,j−1:[
1+

βE(3− 2αE)
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nE

x

]
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βEn
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[
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}
+ γE .

(9)

Similarly, consideration of the boundary condition at the Northern bound-
ary point (boundary point 2) gives a second relation between ψE and ψN.
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The resulting equations are solved simultaneously to give expressions for ψE

and ψN in terms of the four internal grid points marked with solid circles in
Figure 1. Substituting this result in the Shortley–Weller formula (3) com-
pletes the discretisation of the Poisson equation at the point (i, j) subject
to the two Robin boundary conditions at boundary points 1 and 2. The 2D
Taylor series approach of Greenspan [5] for the approximation for the normal
derivative leads to the same result as equation (9).

Finally, the 3D extension of our approach follows directly from the 2D
scheme above. For example, considering the normal derivative at a boundary
point where only the x-component aligns with the grid, we use the 2D ap-
proach in the xy-plane by considering a directional derivative to eliminate the
y-components of the normal derivative and similarly use a directional deriva-
tive in the xz-plane to eliminate the z-component of the normal derivative.
For the general case of three such boundary points adjacent to an internal
grid point, this will give rise to a 3× 3 matrix system to be inverted for the
values of ψ at these three boundary points. With more effort, a 3D Taylor
series expansion gives the same result [6].

2.2 1D error analysis of the Robin boundary
condition problem

This analysis follows the work of Jomaa and Macaskill [7]. Consider the
1D Poisson equation on an interval (xL, xR) with Robin boundary conditions
applied. The error ξ = ψ−ψe, where ψe is the exact solution, satisfies

Lξ = τ , −βL
dξ

dx

∣∣∣∣
x=xL

+ ξL = 0 , βR
dξ

dx

∣∣∣∣
x=xR

+ ξR = 0 , (10)

where αL and αR play analogous roles to the 2D case, τ is the truncation error,
L is the discrete second derivative, and βL and βR are constants. Solving (10)
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for ξ using the quadratic boundary treatment, we obtain

ξk = ∆2

[(
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βL

∆

)
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∆
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]
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(11)

with

HM−1/2 = ∆2
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(12)

and
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∆

3
αLψ

′′′
1 −
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3 [(1− αL)(2− αL)∆+ βL(3− 2αL)]
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∆

3
αRψ
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τk = −
(∆)2

12
ψ

(4)
k , 2 ≤ k ≤M− 2 . (15)

Turning to the linear boundary treatment, the solution of equation (10) for ξ
is

ξk = ∆

[(
βL + (k− αL)∆
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− 1
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(16)
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where

τ1 =
αL

2
ψ ′′

1 −
βL(1− αL)

2(βL + (1− αL)∆)
ψ ′′

L , (17)

τM−1 =
αR

2
ψ ′′

M−1 −
βR(1− αR)

2(βR + (1− αR)∆)
ψ ′′

R . (18)

For both linear and quadratic boundary treatments, the internal trunca-
tion errors τi, i = 2, . . . ,M−2 , are given by equation (15) with O(∆2) accu-
racy. However, the boundary truncation errors τ1 and τM−1 are O(1) for the
linear boundary treatment and O(∆) for the quadratic boundary treatment
respectively. In the Dirichlet case (β = 0) the corresponding boundary errors
ξ1 and ξM−1 are then O(∆2) for the linear boundary treatment and O(∆3)

for the quadratic boundary treatment, as is to be expected since inverting
the Poisson operator corresponds to integrating twice. This means that when
taken together with the internal errors of O(∆2) either approach gives rise to
a uniformly O(∆2) method, although the coefficient of error is significantly
larger with the linear boundary treatment [7].

By contrast, with Robin boundary conditions, the boundary and internal
errors ξk are O(β∆) for the linear boundary treatment and O(β∆2) for the
quadratic boundary treatment. Therefore, with the restriction that β �
M = O(1/∆), the linear case gives rise to a uniformly O(∆) method, while
the quadratic approach gives a uniformly O(∆2) method. Thus in practice
the quadratic treatment is preferred for Robin boundary conditions.

3 Numerical results

This section presents numerical results for two test cases. In Figure 2, we
treat a representative 1D problem and demonstrate that the analytical error
estimates are quantitatively accurate in this case (a range of other test cases
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Figure 2: The error in solving the 1D problem d2ψ/dx2 = − cos x , with
boundary conditions dψ/dx + ψ = γ for x = ±(1 − 5∆/4) respectively,
with γ = cos x∓ sin x . In the left-hand panel the numerical errors for M =

100 are shown with solid curves for both the quadratic and linear boundary
treatments and compared with the corresponding analytic error expressions
(dash-dotted lines) for the quadratic (11), or linear (16) cases respectively.
The rms errors (solid lines) and maximum absolute errors (dash-dotted lines)
for the linear and quadratic boundary treatments are displayed in the right-
hand panel.

show similar agreement). We then consider in Figures 3, 4 and 5 a 2D prob-
lem that shows qualitatively similar behaviour. For all results shown here
we used direct inversion of the coefficient matrix. However iterative methods
can also be used without any problems, although the coefficient matrices are
not M-matrices. We used the conjugate gradient squared iteration method
for sparse matrices as implemented in matlab, cgs.m, for a range of 2D
problems and no difficulties were encountered.

The left-hand panel of Figure 2 shows the numerical error (solid lines)
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Figure 3: Contour of the error for the linear boundary treatment for the
2D problem ∇2ψ = −5 cos 3θ − 40r cos 7θ , (M + 1)∆ = 1.5 and M = 100

subject to ∂ψ/∂n+ψ = γ on the boundary of the five-leaf shape described
by r = 0.5 + 0.15 cos 5θ and with ψ = 0 elsewhere. γ is given by the exact
boundary values of the left hand side of the boundary conditions.

compared with the theoretical error (dash-dotted lines) for both quadratic
and linear boundary treatments of the case with the exact solution ψ = cos x ,
for M = 100 . For the same test problem the right panel shows the rms error
(solid lines) and maximum absolute error (dash-dotted lines) for both linear
and quadratic boundary treatments with M = 40, 80, 160 and 320. Errors
converge like O(∆2) for the quadratic boundary treatment as against O(∆)

for the linear boundary treatment, as expected from the error analysis.

Figures 3 and 4 show contours of the error for the linear and quadratic
boundary treatments respectively, for the Poisson equation∇2ψ = −5 cos 3θ−
40r cos 7θ on a ‘five-leaf’ shape, with Robin boundary conditions where β = 1
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Figure 4: Contour of the error for the quadratic boundary treatment for
the 2D problem ∇2ψ = −5 cos 3θ−40r cos 7θ , (M+1)∆ = 1.5 and M = 100

subject to ∂ψ/∂n+ψ = γ on the boundary of the five-leaf shape described
by r = 0.5 + 0.15 cos 5θ and with ψ = 0 elsewhere. γ is given by the exact
boundary values of the left hand side of the boundary conditions.
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and using M = 100 . Outside the irregular shape we set ψ = 0 . The do-
main is embedded in a square domain of side length 1.5. The maximum
absolute error for the linear case is approximately six times larger than the
maximum absolute error for the quadratic case: there is no particular ten-
dency for errors to be maximal at the boundary. The left-hand panel of
Figure 5 compares the rms errors (solid lines) and maximum absolute er-
rors (dash-dotted lines) for the same problem for a range of values of M for
both the linear and quadratic boundary treatments. The right-hand panel
shows corresponding results for β = 10 (note how the error scales with β, as
predicted by the 1D analysis). In summary, the observed errors for this 2D
problem show similar convergence properties to the 1D cases, and we found
similar results for a broad range of test problems. By contrast with simi-
lar problems with Dirichlet boundary conditions, one must necessarily use a
quadratic boundary treatment in order to obtain O(∆2) convergence. The
1D analysis shows that with Robin boundary conditions, a linear boundary
treatment gives uniform O(∆) error as opposed to the O(∆2) error found
with a quadratic treatment.

4 Conclusion

We presented a simple geometric derivation of a second order accurate solu-
tion for the Poisson equation on an irregular domain subject to Robin bound-
ary conditions. A 1D error analysis suggests that the quadratic boundary
treatment method leads to a uniformly O(∆2) accurate method as opposed
to O(∆) for the linear boundary treatment method. This agrees with numer-
ical results for 2D test cases. Thus when an embedding method is used to
deal with irregular boundaries, it is necessary to use the quadratic approach
in order to match the standard O(∆2) internal error. This is in contrast
to the Dirichlet problem, where a linear boundary treatment is sufficient to
maintain the O(∆2) error. Finally, the extension of the present scheme to
3D is straightforward.
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Figure 5: rms and maximum absolute errors for the case treated in Fig-
ures 3 and 4 for both linear and quadratic boundary treatments. The left-
hand panel shows the rms errors (solid lines) and maximum absolute errors
(dash-dotted lines) for the case β = 1 , while the right-hand panel shows the
case β = 10 .
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