
ANZIAM J. 50 (CTAC2008) pp.C930–C946, 2009 C930

Mathematical analysis of microbial
depolymerization processes of xenobiotic

polymers

M. Watanabe1 F. Kawai2

(Received 15 August 2008; revised 6 June 2009)

Abstract

Biodegradation of polyethylene glycol is studied mathematically.
A mathematical model for depolymerization process of exogenous type
is described, and numerical techniques based on the model are illus-
trated. A comparison between a numerical result and an experimental
result shows that the mathematical method is appropriate for practi-
cal applications.
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1 Introduction

Biodegradation is an essential factor of the environmental protection against
undesirable accumulation of xenobiotic polymers. It is important not only
for water soluble polymers but also for water-insoluble polymers, so-called
plastics, because they are not completely recycled nor incinerated. Micro-
bial depolymerization processes are generally classified into either one of two
types: exogenous type or endogenous type. In an exogenous depolymeriza-
tion process, monomer units are separated from the terminals of molecules
stepwise. Example of exogenous depolymerization process includes the β-
oxidation of polyethylene (pe). On the other hand, the characteristics of
endogenous depolymerization processes include the rapid breakdown of large
molecules due to internal separations to yield small molecules. Examples
of endogenous depolymerization process include the enzymatic degradation
of polyvinyl alcohol (pva). Mathematical models for those depolymeriza-
tion processes have been proposed in previous studies, and those models are
analyzed to study the biodegradation of the xenobiotic polymers.

The biodegradation of polyethylene glycol (peg) is studied. peg is one of
the polyethers which are represented by HO(R-O)nH. For examples: peg,
R = CH2CH2 ; polypropylene glycol (ppg), R = CH3CHCH2 ; polytetram-
ethylene glycol (ptmg), R = (CH2)4 [3]. They are utilized for constituents
in a number of products including lubricants, antifreeze agents, inks and
cosmetics. peg is produced more than any other polyethers, and the major
part is consumed in production of nonionic surfactants. peg is depolymer-
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Figure 1: Weight distribution of peg before and after cultivation of a mi-
crobial consortium E1.

ized by releasing C2 compounds exogenously, either aerobically or anaerobi-
cally [4, 5, 10]. High performance liquid chromatography (hplc) patterns
were introduced into analysis to set the weight distribution of peg with
respect to the molecular weight before and after cultivation of a microbial
consortium E1 (Figure 1).

Previous studies [9, 11], assumed degradation rates to be independent of time,
although time dependent degradation rates were considered in a recent study
assuming a logistic growth in a microbial population [12], and using a cubic
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spline to take the change of microbial population into consideration [13], and
a exponential growth in a microbial population [14]. The mathematical study
of biodegradation of peg is continued with a time dependent degradation
rate. A change of variable reduces the time dependent model into a model for
which the degradation rate is time independent. The techniques developed
in previous studies were applied to solve an inverse problem to determine the
molecular factor of degradation rate for which the solution of an initial value
problem satisfies not only the initial weight distribution but also the weight
distribution after cultivation. The time factor was determined by assuming
the logistic growth in the time integral of microbial population. Once the
degradation rate was found, the transition of the weight distribution was
simulated by solving the initial value problem numerically.

2 Exogenous-type depolymerization model

The pe biodegradation model proposed previously is based on two essential
factors: the gradual weight loss of large molecules due to terminal separa-
tions of monomer units (β-oxidation) and the direct consumption of small
molecules by cells. pe molecules lose their weight through β-oxidation pro-
cesses until they become small enough to be absorbed into cells. Let t and M
represent the time and the molecular weight respectively. Suppose that
x = w (t,M) represents the total weight of M-molecules at time t, where
a M-molecule denote a molecule with molecular weight M. Suppose also
that y = w (t,M+ L), the total weight of (M+ L)-molecules at time t,
where the parameter L represents the weight loss due to the β-oxidation.
Let the function ρ (M) represent the direct consumption rate, and the func-
tion β (M) represents the rate of the weight conversion from the class of
M-molecules to the class of (M− L)-molecules due to the β-oxidation. Let
α (M) = ρ (M) + β (M). The following equation (1) was proposed as a pe
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biodegradation model [1, 2, 6]:

dx

dt
= −α (M) x+ β (M+ L)

M

M+ L
y . (1)

The mathematical model (1) was originally developed for pe biodegradation,
and it can be viewed as a general biodegradation model involving exogenous
depolymerization processes. In the exogenous depolymerization of peg, a
peg molecule is first oxidized at its terminal, and then an ether bond is
split. It follows that L = 44 (CH2CH2O) in the exogenous depolymerization
of peg. The peg molecules studied here are large molecules that cannot
be absorbed directly through membrane into cells. Then ρ (M) = 0 and
α (M) = β (M).

Equation (1) is appropriate for a depolymerization processes over the period
where the microbial population is fully developed and almost constant. How-
ever, the change of microbial population should be taken into consideration
for the period in which it is still in a developing stage or in a decreasing
stage, and the degradation rate should be time dependent. Then the exoge-
nous depolymerization model is

dx

dt
= −β (t,M) x+ β (t,M+ L)

M

M+ L
y . (2)

The solution x = w (t,M) of (2) is associated with the initial condition

w (0,M) = f (M) , (3)

where f (M) represents the initial weight distribution. Given the degradation
rate β (t,M), equation (2) and the initial condition (3) form an initial value
problem.

Time factors of the degradation rate, such as microbial population, dissolved
oxygen, or temperature, should affect molecules regardless of their sizes.
Then the degradation rate should be split into two parts: the time dependent
part σ (t), and the molecular dependent part λ (M). The degradation rate is

β (t,M) = σ (t) λ (M) . (4)
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Let

τ =

∫ t

0

σ (s) ds , (5)

and let
W (τ,M) = w (t,M) ,

X = W (τ,M) ,

Y = W (τ,M+ L) .

Then one finds that
dX

dτ
=
dx

dt

dt

dτ
=

1

σ (t)

dx

dt
,

and
dX

dτ
= −λ (M)X+ λ (M+ L)

M

M+ L
Y . (6)

This equation governs the transition of the weight distribution W (t,M)

which evolves with either the time independent or time averaged degrada-
tion rate λ (M). Given the initial weight distribution f (M), the initial value
problem is a problem to find the solution of the equation (6) subject to

W (0,M) = f (M) . (7)

The inverse problem is to find the degradation rate λ (M) for which the
solution of the initial value problem (6)–(7) also satisfies

W (T,M) = g (M) . (8)

When the solution W (τ,M) of the initial value problem (6)–(7) satisfies this
condition, the solution w (t,M) of the initial value problem (2)–(3) satisfies

w (T ,M) = g (M) , (9)

where

T =

∫ T

0

σ (s) ds . (10)
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The inverse problem consisting of the equation (6) and the conditions (7)
and (8) was solved numerically with techniques developed in previous studies.
Figures 2 shows the degradation rates based on the weight distribution before
and after cultivation for three days (λ1 (M)) and five days (λ2 (M)). The
degradation rate λ2 (M) is approximately six times as large as λ1 (M) in
their common interval, which shows the increase of microbial population
over five days. The figures also show the graph of the function λ (M) based
on λ1 (M) and λ2 (M)

λ (M) =

{
λ1 (M) , M 6 104.1 ,
λ2 (M) , M > 104.1 .

The initial value problem (6)–(7) was solved numerically using the degrada-
tion rate λ (M). The numerical results shows that the experimental results
for t = 3 , t = 5 , t = 7 match the numerical results for τ = 3 , τ = 30 ,
τ = 50 (Figure 3). Section 3 uses this result to determine the time factor of
the degradation rate.

3 Logistic growth in time integral of

microbial population and numerical

simulation

A microbial population grows exponentially in a developing stage. The time
integral of the population τ increases monotonically to a constant value due
to the limited supply of carbon source. A function with such properties was
proposed by Murray [7] to be

τ =
N0Ke

rt

K+ τ0 (ert − 1)
. (11)

Section 2 shows numerically that t1 = 3 , t2 = 5 , t3 = 7 correspond to
τ1 = 3 , τ2 = 30 , τ3 = 50 . The values of parameters N0, K and r were
determined numerically using the result.
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Figure 2: Degradation rate based on the weight distribution of peg before
and after cultivation of a microbial consortium E1: (1) λ1 (M), (2) λ2 (M),
(3) λ (M).
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Figure 3: Numerical results based on the initial value problem (6), (7) for
τ = 3 , τ = 30 , τ = 50 , and the experimental results for t = 3 , t = 5 , t = 7 .
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Solving Equation (11) for N0 and substituting t1 and τ1 for t and τ,

N0 =
τ1K

Kert1 − τ1 (ert1 − 1)
. (12)

Solving Equation (11) for K and substituting t2 and τ2 for t and τ,

K =
τ2N0 (ert2 − 1)

N0ert2 − τ2

. (13)

Substituting the right hand side of Equation (12) for N0 in Equation (13)
and solving for K gives

K =
τ1τ2 (ert2 − ert1)

τ1ert2 − τ2ert1
. (14)

Substituting the right hand side of Equation (14) for K in Equation (12),

N0 =
τ1τ2 (ert2 − ert1)

τ2ert1 (ert2 − 1) − τ1ert2 (ert1 − 1)
. (15)

Let

f (r) = τ3 −
N0Ke

rt3

K+ τ0 (ert3 − 1)
,

where K and N0 are given in terms of t1, τ1, t2, and τ2 by Equations (14)
and (15). The equation

f (r) = 0

was solved numerically by Newton’s method, and found

r ≈ 1.556758 . (16)

Once the degradation rate σ (t) λ (M) are given, the initial value problem (2)–
(3) can be solved directly to see how the numerical results and the experimen-
tal results agree. Here the initial value problem (2)–(3) was solved numeri-
cally with techniques base on previous results [2, 6, 8, 14]. Figure 4 shows
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Figure 4: The weight distribution of peg before and after cultivation for
three, five, and seven days, and the transition of the weight distribution based
on the initial value problem (2)–(3).
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Figure 5: The weight distribution of peg after cultivation for one day, and
the weight distribution based on the initial value problem (2)–(3).
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the transition of the weight distribution during cultivation of the microbial
consortium E1 for five days. Figure 5 shows the numerical result and the
experimental results for the weight distribution after one day cultivation of
the microbial consortium E1.

The numerical results shown in Figure 4 were obtained by solving the initial
value problem (2)–(3). The figure shows a fair agreement between the ex-
perimental results and the numerical results, which validate the exogenous
depolymerization model with time dependent degradation rate. Note that
no information concerning the weight distribution after cultivation for one
day was introduced into the analysis to determine the time factor σ(t). Nev-
ertheless, Figure 5 shows an acceptable agreement between the experimental
result and the numerical result.

4 Discussion

In a depolymerization process where the microbial population becomes an
essential factor, it is important to consider the dependence of the degradation
rate on time. The numerical results based on the exogenous depolymeriza-
tion model show reasonable agreement with the experimental results. Those
results show that it is appropriate to assume that the degradation rate is
a product of a time factor and a molecular factor, and that the integral of
the time factor increases as a logistic growth. In the environment, the time
factor should also depend on other factors such as temperature or dissolved
oxygen. Once these essentials are incorporated into the time dependent fac-
tor, the exogenous depolymerization model should be applicable to assess the
biodegradability of xenobiotic polymers in the environment.

Mathematical models for endogenous depolymerization processes have also
been proposed, and depolymerization processes of pva and polylactic acid
(pla) have been studied by analysis and simulation based on those mod-
els [20, 21, 22, 23, 24]. Mathematical models similar to the endogenous
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depolymerization models have also been introduced by other authors [15, 16,
17, 18, 19].
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