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Numerical study of flow generated in a lake
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Abstract

A finite element method is applied to a system of partial differential
equations governing the dynamics of flow in order to study currents
generated in a lake. Experiments using a float equipped with a GPS
unit calibrate and validate the numerical results.
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1 Introduction

The bank isolating Kojima Lake has six gates, which are opened when nec-
essary to discharge water to Kojima Bay in order to lower the lake’s water
level [5]. In such an event, a current is generated in Kojima Lake. On
May 31, 2008, those gates were opened from 2:36 to 5:49 am gmt. Fig-
ure 1 shows the change of the water levels of the Kojima Lake, the Kurashiki
river, the Sasagase river and Kojima Bay during that period. These data
were introduced into a finite element analysis of momentum equations and a
continuity equation. We took the upwind type technique in the weighted av-
eraged approximation in time discretization to account for convection terms.
In previous work [5] the convex profile of vertical distribution of horizontal
velocities was obtained. In this work we show that it is possible for the
vertical distribution to have concave structure. Note that the water level of
the lake decreased by approximately 0.45m during the period the gates were
opened on May 31, 2008.

The driving force of the gps-float is the fluid resistance on the pair of rect-
angular plates attached underneath the water surface. While the gps-float
travels on the surface, a gps unit evaluates its position consecutively, and
temporal and spatial data to track the float are transmitted to be recorded.
On the other hand, the fluid resistance on the plates is represented in terms
of the velocity of flow. Once the fluid resistance is specified, the motion of the
gps-float is simulated by solving its momentum equations, and a numerical
result and an experimental result compared. The technique determines the
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horizontal components of velocity and their vertical distribution.

The numerical result and the experimental result from May 31, 2008 were
compared in order to check the validity of the numerical result. Data from
Oct 23, 2004 were tested against data from May 31, 2008 in order to see
how different boundary conditions, as well as different equation parameters,
affect the final result.

2 Finite element method for analyzing flow

in the Kojima Lake

2.1 Governing equations of flow

We analyze here a finite element method to solve a series of differential equa-
tions governing shallow water equations (1), (2), (3) [1, 2, 3]:
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parameter γ2 = 0.0026 is the bottom friction coefficient [6], h ≡ h(x,y) is the
bottom topography, z = ζ(x,y) is the lake surface height, and water fluxes
M and N are obtained by integrating the x-component and the y-component
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of the velocity over the depth, respectively:

M =

∫ ζ
−h

udz , N =

∫ ζ
−h

v dz . (5)

Ah is a constant that represents eddy viscosity, whereas ρ0 = 1000 kg/m3 is
the constant density of water. We set Ah = 0.001 for the result obtained on
May 31, 2008, and Ah = 0.01 for the result obtained on Oct 23, 2004.

Along the curve
dx

dt
= u ,

dy

dt
= v ,

equations (1) and (2) become
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2.2 Finite element discretization

After multiplying the equation (6) by δM and applying Green’s theorem, we
integrate it over a domain Ω. Thus we obtain [7]∫∫
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Under appropriate boundary conditions, we set∫
Γ

δM
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−
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)
= 0 . (9)

Let the boundary Γ be a disjoint union of the rigid boundary Γ1 and the open
boundary Γ2. Furthermore, δM is an arbitrary function that vanishes along
the rigid boundary Γ1. Then the left-hand side of the equation (9) is∫
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where s parametrises boundary Γ2. We assume that a uniform flow is formed
at an open boundary perpendicular to a long channel such as cross sections
of rivers and gate ends. Thus the Neumann condition

∂M
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dx = (dy, −dx) · ∇M = 0 (11)

holds on Γ2. Decompose fields
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δM = φi,

where φ1,φ2, . . . ,φn are basis functions, n is the number of nodes, i, j,k =

1, 2, . . . ,n . Now, when we substitute (12) into the equation (8), using equa-
tion (9), we write [7]∑
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In the same way we obtain an equation forN. For the continuity equation (3),
we write ∑
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Let
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where ne is the number of elements consisted in Ω and e = 1, 2, . . . ,ne .

2.3 Time step approximation

For a given ζlj,M
l
j and Nlj, ζ

l+1
j can be calculated. The continuity equa-

tion (14) then becomes
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where θ is a parameter that appears in the weighted averaged approximation
in time discretization. The previous equation is written as∑
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Instead of calculating ζlj, we calculate ζlj∗ at the point (x∗,y∗), where x∗

and y∗ are calculated from the system of ordinary differential equations
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+ Cij
[
(1− θ)Nlj + θN

l+1
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+
∑
j

Aijζ
l
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Denoting the right-hand side of the above equation by p′3, then ζl+1j is the
solution of the simultaneous linear equation

A3ζ
l+1 = p′3 . (28)

Let aij be the entry in the ith row and the jth column of A3. Suppose
that the ith node is on the open boundary. We redefine aij = δij, and set
the ith entry of p3 to the value of ζl+1i given by the boundary conditions
(Figure 1). At the rigid boundaries the values of M and N are set to zero.
Initial conditions are given as M = 0 and N = 0 at all node points.

The finite element method was applied to equations (1), (2) and (3) to sim-
ulate the flow generated in the Kojima Lake. The finite element mesh con-
sisting of 2232 elements and 1246 nodes in the entire region and in a region
near the gates is used [5]. Figure 2 shows numerically calculated velocity
vectors at 80 minutes after the gates were opened on May 31, 2008, in the
entire region and in a region near the gates.

3 Experiment using the GPS-float and

simulation of its motion

A gps-float [5] was used in an experiment of flow generated in Kojima Lake on
May 31, 2008 on Kojima Lake. Its position is recorded every second between
3.37 and 5.29 am gmt. During that period, the gps-float traveled over the
distance of 1211.75 m with average velocity of approximately 0.180777m/s.
On Oct 23, 2004 the gps-float was used in an experiment from 2:35 to 3:40 am
gmt when it traveled over the distance of 631.219m. On that day the gps-
float traveled with the average velocity of approximately 0.161976m/s.
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The vertical average of the velocity components u (x,y, z, t) and v (x,y, z, t)
should equal to ū (x,y, t) and v̄ (x,y, t). They should also vanish at z =

−h (x,y). We assume the functional form

u(x,y, z, t) = c{z+ h(x,y)}αū(x,y, t), (29)

that vanishes for z = −h(x,y). Integrating it from −h(x,y) to ζ(x,y, t) we
obtain

(ζ+ h) ū =

∫ ζ
−h

udz = cū
(ζ+ h)

α+1

α+ 1
, (30)

which leads to

c =
α+ 1

(ζ+ h)
α . (31)

These assumptions lead to the following expression for velocities u (x,y, z, t)
and v (x,y, z, t) in terms of ū (x,y, t) and v̄ (x,y, t) [5]:

u (x,y, z, t) = (α+ 1)

(
z+ h (x,y)

ζ (x,y, t) + h (x,y)

)α
ū (x,y, t)

v (x,y, z, t) = (α+ 1)

(
z+ h (x,y)

ζ (x,y, t) + h (x,y)

)α
v̄ (x,y, t) . (32)

Here ū and v̄ are the vertically averaged velocity components:

ū =
1

ζ (x,y, t) + h (x,y)
M (x,y, t) , v̄ =

1

ζ (x,y, t) + h (x,y)
N (x,y, t) ,

(33)
where M and N are given by equation (5). The system of equations (32)
is solved for α equal to 0.1 and 0.2, and the results are shown in Figures 3
and 4. This system of equations is solved by introducing data from May 31,
2008 and Oct 23, 2004. The motion of the gps-float is simulated by solving
its momentum equations [4, 5].
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Figure 3: Trajectory of the gps-float with elapsed time in minutes shown
along side the path for α = 0.1 on May 31, 2008 and Oct 23, 2004 respectively.
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Table 1: Total difference between the numerical and experimental results
at every 10 minutes after starting the gps-float experiment on Oct 23, 2004.
Values in the table are given in metres.

α d(m = 1) d(m = 2) d(m = 3) d(m = 4) d(m = 5) d(m = 6)

0.1 17.95 50.37 89.54 129.65 191.22 298.76
0.2 20.48 58.77 103.72 159.69 226.30 322.88

Table 2: Total difference between the numerical and experimental results
at every 10 minutes after starting the gps-float experiment on May 31, 2008.
Values in the table are given in metres.

α d(m = 1) d(m = 2) d(m = 3) d(m = 4) d(m = 5) d(m = 6)

0.1 27.42 79.96 158.16 255.38 367.35 477.33
0.2 27.26 77.90 157.26 264.36 390.03 519.05

The parameter d in Tables 1 and 2 is

d =

m∑
i=1

di ,

where m = 1, 2, . . . , 6 . The parameter

di =

√
(xei

− xsi)
2
+ (yei

− ysi)
2,

where i = 1, 2, . . . , 6 . Furthermore, (xei
,yei

) is the experimentally obtained
position of the gps-float, whereas (xsi ,ysi) is the numerically calculated po-
sition of the gps-float, 10–60 minutes after starting the experiment.
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4 Discussion

Figures 3 and 4 show experimental and numerical results of the gps-float’s
motion. Those figures are generated for different values of the vertical pro-
file exponent α, in order to find a numerical result that is closest to the
experimental one. On May 31, 2008 the best numerical result is gener-
ated for α = 0.1 (Table 2). On Oct 23, 2004 the best numerical result is
generated for the same value of α = 0.1 (Table 1). From the system of
equations (32), α is directly proportional to the vertical average of the veloc-
ity components u(x,y, z, t) and v(x,y, z, t), which are denoted by ū(x,y, t)
and v̄(x,y, t).

The initial water levels of Kojima Lake, Kojima Bay, Kurashiki river and
Sasagase river, that are used as boundary conditions are different on May 31,
2008 and Oct 23, 2004. Topographical data are the same. Those data are
introduced into computational analysis of currents generated in Kojima Lake.
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