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Abstract

The article is split into four parts. First, we present the sym-
metric finite element/boundary element-coupling method. Second,
we address the choices of appropriate preconditioners for the result-
ing discrete system when h- and p-versions are performed. Third,
we discuss contact problems which are reduced to variational inequal-
ities. Finally, we show the practical applicability of the finite ele-
ment/boundary element-coupling method by applying it to a metal
turning process. Here the viscoplastic work piece is modelled with
finite elements and the linear elastic work tool (milling cutter) is mod-
elled with boundary elements. This leads to an efficient and fast nu-
merical method to simulate the metal turning process and to predict
failure of the thermal shrink fit which holds the milling cutter.
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1 Introduction

For a model non-linear transmission problem we present in Section 2 a com-
bined approach with finite elements (fe) and boundary elements (be). We
perform the so-called symmetric coupling which renders all boundary condi-
tions on the interface manifold Γ to be natural and allows for a non-linear
elliptic differential operator in the bounded domain Ω. Our solution pro-
cedure makes use of an integral equation method for the exterior problem
and of an energy (variational) method for the interior problems, and consists
of coupling both methods via the transmission conditions on the interface.
We solve the resulting symmetric coupling formulation with the Galerkin
method using finite elements in Ω and boundary elements on Γ . We present
in Theorem 2 hierarchical error estimators for the fe/be-coupling and give
corresponding numerical results in Table 1 and Figure 1. More details and
mixed fe/be-coupling methods are described by Stephan [24]. Section 3
comments on the solvers and preconditioners for the resulting discrete sys-
tems of the fe/be-coupling. Here, additive Schwarz preconditioners play an
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important role. Then Section 4 considers contact problems with Tresca fric-
tion and applies penalty or mortar methods to solve the governing variational
inequalities. Then we present error estimates and corresponding adaptive nu-
merical experiments for h- and p-versions. Finally, in Section 5 we apply the
fe/be-coupling to a viscoplastic thermo-mechanical problem describing a
metal forming process [9]. Here the viscoplastic work piece is modelled with
finite elements and the linear elastic work tool (milling cutter) is modelled
with boundary elements.

2 Symmetric FE/BE-coupling

Let Ω ⊂ Rd, d ≥ 2 , be a bounded domain with Lipschitz boundary Γ = ∂Ω

and Ωc = Rd\Ω̄ with normal n on Γ pointing into Ωc. For given f ∈ L2(Ω),
u0 ∈ H1/2(Γ), ψ0 ∈ H−1/2(Γ) and a ∈ R find u1 ∈ H1(Ω) and u2 ∈ H1loc(Ω

c)

such that

−divA(∇u1) = f in Ω,

−∆u2 = 0 in Ωc,

u1 − u2 = u0 on Γ,

A(∇u1) · n−
∂u2

∂n
= ψ0 on Γ,

u2(x) =

{
a log |x| + o(1), d = 2 ,

O(|x|−1), d = 3 ,
(|x|→∞) .

(1)

The operator A is assumed to be uniformly monotone and Lipschitz contin-
uous; operators of this type are considered by Stephan [22] and Zeidler [30].
By using Green’s formula together with the decaying condition for |x|→∞
in (1) one is led to the representation formula for u2 in Ωc

u2(x) =

∫
Γ

(
u2(y)

∂

∂ny
G(x, y) −G(x, y)

∂u2

∂ny

)
dsy , x ∈ Ωc , (2)
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with the fundamental solution of the Laplacian

G(x, y) =

{
− 1
2π

log |x− y|, d = 2 ,
1
4π

|x− y|−1, d = 3 .
(3)

By using the boundary integral operators

Vψ(x) := 2

∫
Γ

G(x, y)ψ(y)dsy , x ∈ Γ , (4)

Kψ(x) := 2

∫
Γ

∂

∂ny
G(x, y)ψ(y)dsy , x ∈ Γ, (5)

K ′ψ(x) := 2
∂

∂nx

∫
Γ

G(x, y)ψ(y)dsy , x ∈ Γ, (6)

Wψ(x) := −2
∂

∂nx

∫
Γ

∂

∂ny
G(x, y)ψ(y)dsy , x ∈ Γ, (7)

together with their well-known jump relations (as x → Γ) we obtain the
integral equations on Γ

2
∂u2

∂n
= −Wu2 + (I− K ′)

∂u2

∂n
, (8)

0 =(I− K)u2 + V
∂u2

∂n
. (9)

In the interior domain Ω we apply integration by parts and obtain∫
Ω

A(∇u1) · ∇v =

∫
Γ

A(∇u1) · nv+

∫
Ω

f v . (10)

Now inserting (8) into (10) and taking the weak form of (9) yield, together
with the transmission conditions in (1), the weak form of the transmission
problem (1)

2

∫
Ω

A(∇u1) · ∇v dx− 〈∂u2
∂n

, v〉+ 〈K ′∂u2
∂n

, v〉+ 〈Wu1, v〉

= 2(f, v) + 2〈ψ0, v〉+ 〈Wu0, v〉 ,
(11)
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− 〈u1, ψ〉− 〈V
∂u2

∂n
,ψ〉+ 〈Ku1, ψ〉 = −〈u0, ψ〉+ 〈Ku0, ψ〉 . (12)

Here we use the inner products

〈u1, ψ〉 =

∫
Γ

u1ψ , (f, v) =

∫
Ω

fv .

In short (11) and (12) read: find u = u1 ∈ H1(Ω) and φ = ∂u2/∂n ∈
H−1/2(Γ)

A(u,φ; v,ψ) := 2

∫
Ω

A(∇u) · ∇v dx+ B(u,φ; v,ψ) = L(v,ψ) (13)

for all v ∈ H1(Ω) and ψ ∈ H−1/2(Γ) where B(u,φ; v,ψ) and L(v,ψ) are
defined by the left hand sides and the right hand sides of (11) and (12),
respectively.

Remark 1 The above derivation shows that if u1 and u2 solve (1) then
u1 and ∂u2/∂n satisfy (11) and (12). Conversely, provided u1 and ∂u2/∂n
solve (11) and (12) then u1 and u2, defined by (2), are solutions of the trans-
mission problem (1). Furthermore, under the assumptions in (1), the varia-
tional formulation is uniquely solvable (as shown by Costabel and Stephan [8,
24]).

Let XM and YN be finite dimensional approximating subspaces of H1(Ω) and
H−1/2(Γ), respectively, then the finite element/boundary element Galerkin
coupling reads: find uM ∈ XM and φN ∈ YN such that

A(uM, φN; v,ψ) := 2

∫
Ω

A(∇uM) · ∇v dx+B(uM, φN; v,ψ) = L(v,ψ) (14)

for all v ∈ XM and ψ ∈ YN .

As shown by Costabel and Stephan [8, 24] every Galerkin scheme (14) con-
verges with optimal order; that is, with the exact solution of (13) and the
Galerkin solution uM and φN of (14) there holds

eu,φ := ‖u−uM‖1,Ω+‖φ−φN‖−1/2,Γ . inf
û∈XM

‖u−û‖1,Ω+ inf
φ̂∈YN

‖φ−φ̂‖−1/2,Γ .
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This gives for the hp-version of the Galerkin scheme (14) on quasiuniform
meshes eu,φ . hαp−2α with some α ∈ R and on geometrically refined meshes

eu,φ .

{
exp(−b1M

1/3) + exp(−b2N
1/2), d = 2,

exp(−b1M
1/5) + exp(−b2N

1/4), d = 3,

with some b1, b2 ∈ R where M = dof of XM, N = dof of YN. These results
were derived by Guo and Stephan [10], Babuška et al. [2], Maischak and
Stephan [16, 23].

Next we restrict ourselves to the h-version of (14), and we introduce a hier-
archical error estimator for the fe/be-coupling. For this purpose we consider
regular triangulations ωH of Ω and partitions γH of Γ . Our test and trial
spaces are

TH := {vH : Ω→ R ; vH p.w. linear on ωH , vH ∈ C0(Ω)} , (15)

τH := {ψH : Γ → R ; ψH p.w. constant on γH} . (16)

On locally refined meshes we distinguish between old hat functions bold (being
one at the vertices of the triangles) and new hat functions bnew (being one
at the midpoints of the edges of the triangles). On the boundary mesh γH
we consider piecewise constant functions β with βiold = 1 on interval Γi and

βinew =

{
1, on left half of Γi ,

−1, on right half of Γi .

Let n denote the number of new nodes, m the number of intervals on the
fine boundary mesh and let Tj = span{bjnew}, 1 ≤ j ≤ n , τk = span{βknew},
1 ≤ k ≤ m . Then one has stable two level subspace decompositions TH/2 =

TH ⊕ T1 ⊕ · · · ⊕ Tn , τH/2 = τH ⊕ τ1 ⊕ · · · ⊕ τm of the finite element and
boundary element spaces. Now one considers sequences of nested spaces
T̃k× τ̃k ⊂ T̃k+1× τ̃k+1 starting from T̃0 = TH , T̃1 = TH/2 , τ̃0 = τH , τ̃1 = τH/2 .

Let (u,φ) be the exact solution and (uk, φk) ∈ T̃k × τ̃k be the Galerkin
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solution at level k ∈ N0 . Under the saturation assumption, that is, there
exists κ < 1 such that

‖u−uk+1‖1,Ω+‖φ−φk+1‖−1/2,Γ ≤ κ
(
‖u− uk‖1,Ω + ‖φ− φk‖−1/2,Γ

)
, (17)

there holds the following theorem. Here and in Table 1 we use the notation

‖u− uL, φ− φL‖2H := ‖u− uk‖21,Ω + ‖φ− φk‖2−1/2,Γ .

Theorem 2 (Mund, Stephan [20]) Assuming (17) there holds

‖u− uL, φ− φL‖2H ≈ η2 :=

n∑
i=1

Θ2k,i +

m∑
j=1

ϑ2k,j ,

where

Θk,i :=
|L(bk+1,i, 0) −A(uk, φk; , bk+1,i, 0)|

‖bk+1,i‖H1(Ω)

,

ϑk,j :=
|L(0, βk+1,j) −A(uk, φk; 0, βk+1,j)|

‖βk+1,j‖H−1/2(Γ)

,

with basis functions bi,k+1 ∈ T̃k+1\T̃k and βk+1,j ∈ τ̃k+1\τ̃k .

Remark 3 A simple adaptive algorithm uses Θk,i and ϑk,j for local fe/be-
refinements and it refines if ηrk ≥ θmax1≤l≤Nk

ηlk as derived by Mund and
Stephan [20], where ηrk := ηk on the rth triangle ∆rk at level k, 1 ≤ r ≤ Nk ,
and θ is a preset value.

Remark 4 Residual-type error estimators were derived by Carstensen and
Stephan [3] for the h-version of 2D and 3D fe/be-coupling, namely

‖u− uh‖1,Ω + ‖φ− φh‖−1/2,Γ ≤ C(R1 + R2 + R3 + R4),

where

R21 =
∑
∆∈ωh

h2
∫
∆

|f+ div(σ)|2 dx ,
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Figure 1: Nonlinear case: error in energy norm/local error indicators [20].
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Table 1: Errors in energy norm EL and error indicator ηL versus number of
unknowns. L = level, NL = dim TL + dim τL , EL := ‖(u− uL, φ− φL)‖H .
L NL dim TL dim τL EL ηL ηL/EL κL αL
0 37 21 16 0.10040 0.03693 0.368 — —
1 62 44 18 0.06912 0.02546 0.368 0.688 0.505
2 123 103 20 0.04708 0.01729 0.367 0.681 0.451
3 254 232 22 0.03181 0.01163 0.366 0.676 0.483
4 534 510 24 0.02164 0.00807 0.373 0.680 0.489
5 1142 1112 30 0.01453 0.00537 0.369 0.671 0.511
6 2436 2400 36 0.00981 0.00365 0.372 0.675 0.511
7 5217 5175 42 0.00660 0.00248 0.375 0.673 0.515
8 11088 11036 52 0.00447 0.00170 0.381 0.676 0.516
9 23283 23217 66 0.00302 0.00115 0.381 0.677 0.525

R22 =
∑

interface E

hE

∫
E

|[σ · nE]|2 ds ,

R23 =
∑
E on Γ

hE ‖{σ · n−ψ0 +W(uh − v0) + (K ′ − I)φh}‖2L2(E) ,

R24 =
∑
E on Γ

hE

∥∥∥∥ ∂∂s ((K− I)(uh − u0) − Vφh)

∥∥∥∥2
L2(E)

,

with σ := ρ(|∇uh|)∇uh .

In numerical experiments reported by Carstensen, Mund and Stephan [20, 3],
hierarchical and residual estimators behave similarly, but the computation
of R3 and R4 is expensive. Table 1 lists the error E2L := ‖u − uL‖21,Ω + ‖φ −

φL‖2−1/2,Γ , the error indicator ηL, the experimental saturation constant κL,

and the experimental convergence rate αL for problem (1) on an L-shaped
domain Ω, when A(∇u1) = ρ(|∇u1|)∇u1 with ρ = 1

6

(
1+ 5

1+5t

)
. Figure 1

shows the respective errors in the energy norm and the sums of the local
error indicators plotted versus the number of unknowns N . Here

∑n
i=1Θ

2
k,i

is the sum of the error indicators fem;
∑m
j=1 ϑ

2
k,j is the sum of error indicators
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bem. Further details are investigated by Mund and Stephan [20].

3 Preconditioners for FE/BE-coupling

Here we present preconditioners for the hp-version of the symmetric fe/be-
coupling. As iterative solver Heuer, Maischak, Stephan [13] apply the mini-
mum residual method (minres); its stable formulation, the hybrid modified
conjugate residual method (hmcr), is considered by Mund and Stephan [19].
The linearized Galerkin fe/be-coupling system (14) is in matrix formA B> 0

B C+W K> − I

0 K− I −V


︸ ︷︷ ︸

= A

uΩ1

uΓ
φΓ

 =

b1b2
b3

 (18)

where the fem block AN =

(
A BT

B C

)
correspondents to a Neumann problem

for the Laplacian. In (18) W denotes the matrix block belonging to the
hypersingular operator and so on; thus we use same letters for matrix and
operator. The components uΩ1

, uΓ and φΓ denote the coefficient vectors
of the Galerkin approximations of u in Ω1, u on Γ and ∂u2/∂n = φ on Γ ,
whereas bi denotes the ith component of the right side in (14).

Considering separately the finite element functions on the interface boundary
and in the interior domain, and taking the boundary element functions which
discretize the weakly singular operator, we have a splitting of the ansatz space
into subspaces. They induce a three-block decomposition of the Galerkin
matrix which will be the three-block preconditioner. By this decomposition
the strong coupling of edge and interior functions is neglected. Therefore, this
three-block splitting allows only for sub-optimal preconditioners. Already in
case of exactly inverting the blocks one gets O(h−3/4p3/2) iteration numbers.
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In detail we employ a preconditioner of the form

M3 =

 Ã 0 0

0 C̃ 0

0 0 Ṽ

 (19)

where Ã, C̃ and Ṽ are spectrally equivalent matrices to A, C and V , respec-
tively.

Considering the Neumann block as a whole, that is, by taking together finite
element functions on the interface and in the interior, we obtain a two-block
Jacobi method which has bounded iteration numbers for exact inversion of
the two blocks and therefore, allows for almost optimal two-block precondi-
tioners.

Our preconditioning matrix is

M2 =

(
ÃM 0

0 Ṽ

)
(20)

where ÃM is spectrally equivalent to AN+W+M and Ṽ is spectrally equiv-
alent to V . Here M is an additional mass matrix which is added to make
AN+W positive definite. As shown by Heuer et al. [13] the iteration numbers
of the two-block hmcr are bounded.

The additive Schwarz preconditioner Masm extends the two-block methods
by replacing the main blocks by block-diagonal matrices. Here we proceed
as follows. First we construct discrete harmonic functions by applying the
Schur complement method for the finite element block of the Galerkin ma-
trix. Then, for the finite element part, we decompose the test and trial
functions in nodal, edge and interior functions. This amounts to a block Ja-
cobi (Additive Schwarz) preconditioner for the finite element block. We split
the boundary element block, belonging to the weakly singular integral opera-
tor, into unknowns from a coarse grid space (consisting of piecewise constant
functions), and into individual subspaces for each element (consisting of all
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polynomials up to degree p without the constants). Our preconditionerMdiag

is obtained by further splitting the subspaces of edge functions (for both finite
elements and boundary elements) into one dimensional subspaces according
to the edge basis functions. For the two-block method we obtain in this way
two different preconditioned linear systems which need respectively O(log2 p)
and O(p log2 p) minimum residual iterations to be solved up to a given ac-
curacy.

In the first case we apply the Schwarz preconditioner based on decompos-
ing the fe-subspaces XM (as described by Babuška et al. [1]) and the be-
subspace YN (as described by Tran and Stephan [27]). Here we decompose
the fe ansatz space into piecewise constant functions on the boundary mesh
and local subspaces on each element spanned by Legendre polynomials. Re-
spective details are given by Heuer et al. [13]. The resulting additive Schwarz
preconditioner is calledMasm. In the second case we take partially diagonal
scaling resulting from further refining the subspace decompositions. This
block diagonal preconditioner consists of blocks belonging separately to the
piecewise linear functions, the interior functions for individual elements and
the piecewise constant functions. For the remaining functions we simply take
the diagonal of the stiffness matrix A. This method combines the decompo-
sition of XM, proposed by Babuška et al. [1], and of YN, proposed by Heuer
et al. [15], and gives the preconditioner Mdiag.

Of course we can also apply multilevel preconditioners to the coupled fe/be-
system of the h-version. Here we use multigrid or bpx for the fe matrix A
and for the be matrices W and V . Whereas the fe preconditioners are
standard, the be preconditioners for the boundary integral operators were
first analyzed in the concept of multilevel additive Schwarz methods by Tran
and Stephan [26]. For a multigrid preconditioner we have bounded itera-
tion numbers of hmcr solvers where for bpx the iteration numbers grow
like O(log2 1

h
).

Finally we remark that overlapping Schwarz methods for the boundary inte-
gral operators (with single layer potential and hypersingular operator) have
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Table 2: Numbers of iterations required to reduce residual by a factor
of 10−3 (h-, p-versions) [13].

1/h p M+N A M−1
3 A M−1

2 A M−1
asmA M−1

diagA
2 2 37 36 21 11 30 30
2 4 97 138 34 12 47 52
2 6 181 285 40 13 54 67
2 8 289 536 45 13 62 77
2 10 421 892 50 13 66 94
2 12 577 1374 55 13 74 111
2 14 757 2328 60 13 82 135
2 16 961 > 9999 79 17 102 197
4 1 37 17 15 10
8 1 97 38 23 13

16 1 289 67 32 13
32 1 961 130 45 14
64 1 3457 243 60 15

128 1 13057 476 75 15
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been studied by Tran and Stephan [28] and non-overlapping Schwarz methods
by Heuer, Leydecker and Stephan [12, 14].

4 Contact problems with Tresca friction

We consider two non-overlapping polygonal domains Ωi, i = 1, 2 , with Lip-
schitz boundaries Γ i. Each Γ i consists of three mutually disjoint measur-
able parts Γ iD, Γ iN and Γ iC, where Dirichlet, Neumann and frictional contact
conditions are prescribed. Let g(x), x ∈ ΓC := Γ 1C ∪ Γ 2C , be the distance
between the bodies. We define a jump h ∈ C(ΓC) across ΓC pointwise as
[h](x) := h(x) − h(b(x)), x ∈ ΓC , with a bijective mapping b : Γ 1C → Γ 2C,
where the normal or the tangential displacement (un := u · n or ut := u · t)
is at h(x). The stress tensor σ is determined by u with Hooke’s law and
under small strain assumptions there holds with λ > 0 and µ > 0

σ(u) = λ tr ε(u) + 2µε(u), ε(u) = (∇u+∇uT )/2 .

The two body contact problem reads: for given traction t̂ on ΓN, friction
F ≥ 0 , and gap g, find displacement u : Ω = Ω1 ∪Ω2 → R3 such that

divσ(u) = 0 in Ω,

u = 0 on ΓD := Γ 1D ∪ Γ 2D ,
σ(u) · n = t̂ on ΓN := Γ 1N ∪ Γ 2N ,

σn ≤ 0 , [un] ≤ g , σn([un] − g) = 0

|σt| ≤ F , σt[ut] + F |[ut]| = 0

}
on ΓC ,

(21)

with scalar normal and tangential stresses σn := n·σ(u)·n , σt := t·σ(u)·n .
The given friction function F defines pointwise the sticking threshold of the
bodies; that is, as seen from (21), if the absolute value of the tangential stress
does not reach the given friction |σt| ≤ F , then [ut] = 0 , and [ut] 6= 0 is
only possible if [σt] = F .
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As shown by Chernov, Maischak and Stephan [6, 7], the two body prob-
lem (21) is reduced to the following domain variation inequality for admissible
functions belonging to the convex cone KΩ := {u ∈ H1D(Ω), [un] ≤ g on ΓC};
that is, find u ∈ KΩ such that∫

Ω

σ(u) : ε(v− u)dx+

∫
ΓC

F(|[vt]| − |[ut]|)ds ≥
∫
ΓN

t̂ · (v− u)ds (22)

for all v ∈ KΩ , where : denotes the standard tensor product (as used by
Wriggers [29]). Integration by parts gives∫

Ω

σ(u) : ε(v−u)dx =

∫
Γ

T (u) · (v−u)ds−

∫
Ω

divσ(u) · (v−u)dx (23)

with divσ(u) = 0 inΩ. On the other hand the dtn-map or Steklov–Poincaré
operator S = W + (I + K′)V−1(I + K) satisfies 〈T (u), v − u〉 = 〈Su, v − u〉
where 〈·, ·〉 means integration on Γ . Hence using (22) and (23) one re-
duces problem (21) to the boundary variational inequality: find u ∈ K :={
u ∈ H̃1/2(Γ \ ΓD), [un] ≤ g on ΓC

}
such that for all v ∈ K∫

Γ

(Su) · (v− u)ds+

∫
ΓC

F(|[vt]| − |[ut]|)ds ≥
∫
ΓN

t̂ · (v− u)ds . (24)

Applying penalty methods to (22) is a standard approach for fe-simulations
of contact problems. As analyzed by Chernov et al. [5] we approximate the
boundary variational inequality (24) by the penalty method; that is, we find
uε ∈ H̃1/2(Γ\ΓD) such that∫
Γ

Suε ·φds+

∫
ΓC

ε−1
n [uεn]

+
[φn] ds+

∫
ΓC

ε−1
t F [uεt ]

∗
[φt] ds =

∫
ΓN

t̂N ·φds

where εn, εt > 0 are penalty parameters, a∗ := sign(a) min(εt, |a|), a+ :=

max(a, 0) for some a ∈ R . Note that the penalty method is formulated on
the unconstrained space H̃(Γ\ΓD) and with g ≡ 0 for simplicity.
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Let ψε = Suε be the traction, Ψε its Galerkin approximation with exact uε

and its approximation Uε, and Pεn and Pεt be the Galerkin approximation of
pεn and pεt respectively. We define the (triple bar) norm

‖|uε −Uε‖| :=
(
‖uε −Uε‖2H1/2(Γ) + ‖ψε −Ψε‖2H−1/2(Γ)

+ ‖ε1/2n (pεn − Pεn)‖2L2(ΓC) + ‖ε1/2t F−1/2(pεt − Pεt )‖2L2(ΓC)

)1/2
.

(25)

The following residual a posteriori error estimate is proven by Chernov [4] for
the h-version of the fe/be-coupling on quasiuniform meshes Th if εn ≥ C̃h
and εt ≥ C̃Fh for some constant C̃ > 0

c
∑
I∈Th

η2h(I) ≤ ‖|uε −Uε‖|2 ≤ C
∑
I∈Th

η2h(I)

with the local error indicators

η2h(I) :=hI
∥∥t̂− ŜUε

∥∥2
L2(I∩ΓN)

+ hI
∥∥Pεnn+ Pεtt− ŜUε

∥∥2
L2(I∩ΓC)

+ hI

∥∥∥∥ ∂∂s(VΨε − (K+ 1/2)Uε)

∥∥∥∥2
L2(I)

.
(26)

Here Ŝ is the discretization of S (as described by Chernov et al. [5]), I ∈ Th
is the mesh element and c and C are positive constants independent of the
mesh size h.

Figure 2 shows a frictional contact problem (with Tresca friction) between an
elastic body Ω = [−1, 1]2 and a rigid obstacle γ := [−1, 1]× {−1, d} which is
pushed upwards with d = 0.6 · 10−4. Further details were given by Chernov
and Stephan [7].

An alternative technique for approximately solving the variational inequal-
ity (24) is the mortar method analyzed by Chernov et al. [6]. In contrast
to the penalty method, no intermediate formulation is needed and the dis-
crete version of the variational inequality (24) is solved. In order to obtain
the hp-version of the bem for the inequality (24) via the mortar method,
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Figure 2: Sequence of the adaptively generated meshes and deformed ge-
ometries [7].

we decompose each Γ i, i = 1, 2 , into a finite family of straight line seg-
ments T ih such that each segment belongs to Γ iD, or Γ iN, or Γ iC. Based on T ih ,
i = 1, 2 , we define the space of globally continuous piecewise polynomial
functions V i

hp (discretization of the displacement) and the space of glob-

ally discontinuous piecewise polynomial functions W i
hp (discretization of the

traction). Let PpI
(I) be the space of polynomials on I of degree at most pI.

Then we demand U|I ∈ PpI
(I) and Ψ|I ∈ PpI−1(I) for arbitrary U ∈ V i

hp

and Ψ ∈ W i
hp. Note that the mesh nodes and the polynomial degrees do

not match in general across ΓC, which is strongly desirable in many appli-
cations considered by Wriggers [29]. On the other hand, the non-matching
property makes discretization of the convex set of admissible solutions K
in (24) more complex, since the condition u1n − u2n ≡ [un] ≤ g is difficult
to realize in each x ∈ ΓC . We impose this condition in a weak sense. In
order to define discrete contact conditions we introduce auxiliary spaces of
normal traces on Γ iC by N i

hp := {W = U · ni|ΓC : U ∈ V i
hp}, and the mor-

tar space M1
hp := {Ψ ∈ N 1

hp : Ψ ∈ PpI−1(I), if I ∩ ∂ΓC 6= ∅}, without loss

of generality associated with T 1h . We define the hp-mortar projection op-
erator (as introduced by Chernov et al. [6] and by Seshaiyer and Suri [21])
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π1hp : H1/2(ΓC)→ N 1
hp by

π1hpφ = φ in ∂ΓC ,∫
ΓC

(φ− π1hpφ)Ψ1 ds = 0 for all Ψ1 ∈M1
hp .

(27)

Let Gihp be the set of Gauss–Lobatto nodes associated with the elements

of T ih . Let Vhp := V1
hp × V2

hp . Now we give the discrete counterpart of (24)
obtained by the hp-version bem and the mortar projection: find U ∈ Khp :=

{U ∈ Vhp : π1hp[Un](x) ≤ g(x) for all x ∈ G1hp ∩ ΓC}:∫
Γ

(ŜU) · (Φ−U)ds+

∫
ΓC

F(|π1hp[Φt]| − |π1hp[Ut]|)ds

≥
∫
ΓN

t̂ · (Φ− u)ds for all Φ ∈ Khp .

(28)

Note that in general Khp 6⊂ K .

A heuristic local a posteriori error indicator for the variational inequality (28)
was presented by Chernov and Stephan [7] together with numerical experi-
ments (based on a three-step hp-adaptive algorithm introduced by Maischak
and Stephan [17]). Our experiments [7] (compare Figures 3 and 4) show that
this adaptive procedure leads to appropriate mesh refinement and distribu-
tion of polynomial degrees (given by the numbers in Figure 4) respecting the
singular behavior of the solution at the contact zone and at the corners or
where the boundary conditions change.

5 FE/BE for viscoplastic thermo-mechanical

coupling

To compute the metal turning process, we use the following fe/be-procedure
for the velocity and temperature formulation of the viscoplastic thermo-
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Figure 3: Model problem, deformed configuration and contact traction [7].
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Figure 4: Adaptively generated meshes and polynomial degrees after three,
six and nine refinement steps [7].
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mechanical contact problem. For this purpose we choose Hart’s constitu-
tive model to allow viscoplastic behaviour in the workpiece. Keeping track
of two internal state variables, we only have to solve a series of linear elas-
tic problems using the hypoelastic material law. These variables are the
anelastic strain tensor ε̊a and a scalar σ(∗), called hardness, which is sim-
ilar to an isotropic strain hardening parameter or current yield stress. As
opposed to other viscoplastic material models, Hart’s model enables us to
use finite elements as well as boundary elements for a viscoplastic workpiece.
Further details are investigated by Stephan et al. [25] and Mukherjee and
Chandra [18].

Now, we consider the initial boundary value problem for velocity v, temper-
ature Θ and strain rates ∇v as defined below.

Let ui(x, 0), vi(x, 0) and Θi(x, 0) (i = 1, 2) denote the initial displacement,
velocity and temperature, respectively. For given density ρ, rate of body
force ḟ in Ωt := (Ω1

t ,Ω
2
t) and boundary traction ṫ on the Neumann bound-

ary ΓNt we seek v1 ∈ Ω1
t , v

2 on Γ 2t := Γ 2tN ∪ Γ 2tC and Θ := (Θ1, Θ2) in Ωt, such
that the following system of equations is satisfied∫

Ω1
t

(∇v1) : C : (∇ṽ1) −

∫
Ω1

t

(∇v1) : G̊T (σ) : (∇ṽ1) +
〈
Sv2, ṽ2

〉
Γ2
t

+
〈
Ṗ(v1, v2), [ṽ]

〉
Γ1
tC

−

∫
Ω1

t

dn : C : ∇ṽ1 =

∫
Ω1

t

ρ ḟ · ṽ1 +

∫
ΓN
t

ṫ · ṽ1∫
Ωt

[
∂Θ

∂t
Θ̃+ κ∇Θ∇Θ̃

]
− γ12

∫
Γ1
tC

P · ~n[Θ][Θ̃]

−

∫
Γ1
tC

µfP · ~n |[v]τ|
(
γ1Θ̃

1 + γ2Θ̃
2
)

= 0

for ṽ1 in Ω1
t , ṽ

2 on Γ 2t , Θ̃ in Ωt and 0 ≤ t ≤ T .

On the contact boundary Γ 1tC the term Ṗ denotes the rate of the boundary
traction. In the model introduced by Hart [11], the nonelastic part dn of
the deformation rate d describes the viscoplasticity together with the fourth
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order tensor G̊. C denotes the Hooke’s tensor, µf the friction coefficient. S is
the Steklov–Poincaré boundary integral operator of linear elasticity (dtn
mapping) and γ1, γ2, γ12 and κ are suitable constants. [Θ] and [ṽ] de-
note the jump of the temperature and displacement between the two bodies,
respectively. ~n is the exterior normal on Ω2

t .

As described by Stephan et al. [25], the heat generation during the process
is incorporated by applying a fixed point (staggered) iteration between the
equations of mechanical equilibrium and heat conduction. We compute the
velocity with finite elements in the work piece and with boundary elements
on the boundary of the work tool. The temperature is computed using finite
elements in both bodies. The heat conduction equation is discretized with
backward Euler in time whereas the viscoplastic material in the work piece
is discretized with an explicit Euler time stepping procedure. Finally, the
friction at the contact edge between workpiece and tool is computed by a
penalty method as performed by Stephan et al. [25].

6 Conclusion

As demonstrated the symmetric coupling of finite elements and boundary
elements is a powerful approach for solving nonlinear transmission problems
(with linear operators in the unbounded region). Optimal convergence rates
are obtained when the hp-version together with geometric mesh refinement
is used. For the h-version, hierarchical error estimators are cheaper than
residual-type error estimators, whereas both estimators lead to similar adap-
tive refinements. Since the large discrete systems resulting from the fe/be-
coupling are ill-conditioned and dense, preconditioners are crucial for the
applicability of iterative solvers. As shown, efficient preconditioners for the
h-, p- and hp-versions can be constructed by the Schwarz method. Since in
case of linear elasticity, contact problems can be reduced to variational in-
equalities on the domain boundary, boundary elements can be applied very
successfully. Here one can either perform the traditional penalty method or
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implement the more powerful hp-version of the bem together with the mor-
tar projection. Presented numerical results for adaptive refinements show
the strength of the methods. Especially for nonlinear problems like the metal
turning process with a viscoplastic working piece and a linear elastic working
tool, the fe/be-coupling gives an efficient solution procedure as described by
Denkena et al. [9]. Here, of course, the fem-part takes care of the viscoplastic
material, whereas the linear elastic tool is modelled via boundary elements.
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