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Abstract

A wavelength resolved measurement technique used in neutron
imaging applications is known as energy-resolved neutron transmission
imaging. This technique of reconstructing residual strain maps provides
high spatial resolution measurements of strain distribution in polycrys-
talline materials from sets of Bragg edge measurement images. Strain
field reconstructions obtained from both triangular and quadrilateral
finite element meshes are compared. The reconstruction is approached
via a least square method and relies on the inversion of the longitudinal
ray transform, which has uniqueness issues.
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1 Introduction
This research presents a technique for measuring spatially resolved structures
in crystalline materials using pulsed neutron beams based on the pixelated
time-of-flight (tof) neutron transmission method. The tof is the total
time taken by a neutron while travelling from the sample to the detector.
Tomographic imaging deals with reconstructing an image from its projections.
From a mathematical viewpoint, neutron strain tomography examines the
data accumulated by a ray to best extract information about strain. This
work is motivated by the need to reconstruct three-dimensional maps of bulk
variation in residual elastic strain throughout samples like steel cylinders,
ring-and-plugs, and crushed rings using two-dimensional projected data [10,
14, 13].

On a pulsed source [12, 11], energy-resolved imaging is enabled by a tof
analysis of the neutrons transmitted or scattered by the sample. By measur-
ing neutron tof and calculating an associated wavelength from measured
neutron velocity, the wavelength-intensity distribution at the detector can be
determined. The relative transmission of a neutron is observed as a function
of wavelength and sharp discontinuities in transmission indicate Bragg edges.
These Bragg edges occur at points where Bragg’s law can no longer be fulfilled.
The Bragg edge position for a given wavelength is directed by diffraction
and provides a direct measure of lattice parameters [7, 4]. Reconstruction of
strain from energy-resolved imaging has its limitations, as it only measures
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the averaged strain through the sample thickness in the direction of neutron
propagation [14].

The method proposed here, based on the Bragg edge neutron transmission
method, is non-destructive and, in principle, allows three-dimensional recon-
struction of the residual strain throughout the bulk of the sample. Although
in the present work we consider reconstructing two-dimensional elastic strain
using sets of Bragg images. The reconstruction involves the calculation of
line integrals using a longitudinal ray transform (lrt). In the present work
we compare the reconstructed strain field with different mesh types, namely
triangular (three nodes) and quadrilateral (four nodes).

2 Longitudinal ray transform
The strain in the direction parallel to the neutron beam is determined by
measuring the relative shifts in the position of Bragg edges in the tof
spectrum and relating them to shifts in the lattice spacing. The lattice
spacing d and the tof t share a linear relationship

d =
h

2mL
t ,

where h is Planck’s constant, m is the neutron mass and L is the path length.
The elastic strains are

ε =
d− d0
d0

=
4t
t
, (1)

where d0 is the unstrained lattice spacing. Mathematically, the average strain
within a body, as measured by Bragg edge neutron transmission, can be
idealised as a line integral called the longitudinal ray transform (lrt), which
captures the component of strain along the line in the direction of the unit
vector n̂ = (n1, n2) [10]. The lrt of the strain field models each pixel within
a strain image:

Iε(x0, y0, n̂) =
1

`

∫ `
0

n̂Tε(x0 + sn1, y0 + sn2)n̂ds , (2)
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where
ε(x, y) =

[
ε11(x, y) ε12(x, y)
ε12(x, y) ε22(x, y)

]
, (3)

is a symmetric tensor field of rank two. The aim is to recover the strain tensor
field ε(x, y) from given values of its lrt.

3 Finite element discretisation
In this section, the finite element discretisation of the lrt is shown with
triangular and quadrilateral meshes. Let {φn}Nn=1 be the set of all standard
linear basis functions associated with the N vertices of the triangulation in the
domain Ω. The choice of basis functions for the forward problem is governed
by considerations of computational cost and accuracy of the numerical model.
This is often not an optimal choice for the inverse problem, where it may be
more appropriate to adapt the basis expansion to physical limits of resolution
of the reconstruction and to enforce equilibrium constraints in the admissible
solutions. Tensor strain components are

ε11(x, y) =
∑
n

V1nφn(x, y) , ε22(x, y) =
∑
n

V3nφn(x, y) , (4)

ε12(x, y) =
∑
n

V2nφn(x, y) = ε21 ,

where Vkn, k = 1, 2, 3 , are unknowns coefficients to be determined. Hence,
an equivalent formulation of equation (2) is

Iε(x0, y0, n̂) =
1

`

∫ `
0

[
n1

(∑
n

V1nφn(x0 + sn1, y0 + sn2)

)
n1

+ 2n1

(∑
n

V2nφn(x0 + sn1, y0 + sn2)

)
n2

+n2

(∑
n

V3nφn(x0 + sn1, y0 + sn2)

)
n2

]
ds .

(5)
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Figure 1: Beam with triangular mesh.

(a) Tri mesh nodes (b) Initial mesh (c) First refinement

We write (5) in matrix notation:

Iε = Kijε , (6)

where Iε is the vector containing all of the Bragg edge strain field measure-
ments, and ε is the vector of order 3N × 1 containing all unknown coeffi-
cients Vkn for each element. Matrix Kij for {j = number of projections, i =
3×N} is formed from the evaluation of basis functions and the normal direc-
tion vector at each node of the triangulation shown in Figure 1a. The sum of
the integral evaluation is then normalised by the path length. By evaluating
the results from each node, the coefficient matrix Kij is formed. Note that for
many projections taken, a maximum of 12 columns per row with non-zero
elements corresponding to four intersecting nodes makes the Kij matrix sparse.
The system equation (6) is further reduced to a minimisation problem which
can be solved by using least square fitting approach

min ‖Kε− Iε‖2 . (7)

In practice, the number of unknown coefficients is relatively small compared
to the amount of experimental data available. Hence, the system is usually
over determined. Inverse problems are generally ill-posed, which means
that a unique reconstruction of strain is not possible without imposing
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extra conditions [8, 1, 6]. Hence, to ensure the uniqueness of the solution,
equilibrium equations are imposed implicitly and are defined as

∂

∂x
(ε11 + νε22) +

∂

∂y
(1− ν)ε12 = 0 ,

∂

∂y
(ε22 + νε11) +

∂

∂x
(1− ν)ε12 = 0 ,

(8)

where ν is Poisson’s ratio. The equilibrium conditions are written in the weak
formulation as follows:∫

Ω

(
∂

∂x
(ε11 + νε22) +

∂

∂y
(1− ν)ε12

)
φn = 0 , n = 1, . . . ,N ,∫

Ω

(
∂

∂y
(ε22 + νε11) +

∂

∂x
(1− ν)ε12

)
φn = 0 , n = 1, . . . ,N .

(9)

Let
∂εlk(x, y)

∂x
= Nlk ,

∂εlk(x, y)

∂y
=Mlk , l, k = {1, 2} ,

be the derivatives of the strain tensor field components. Now, since εlk are
piecewise linear functions, their derivative with respect to x and y, that is,
Nlk and Mlk, are piecewise constant. Hence, equation (9) is further written
as: ∑

T∈Th

[N11 + νN22 + (1− ν)M12]

∫
T

φn = 0 ,

∑
T∈Th

[M22 + νM11 + (1− ν)N12]

∫
T

φn = 0 ,

(10)

where Th is the set of all triangles (or quadrilaterals) in the mesh. This gives
another set of equations:

Cε = 0 , C =

[
C1
C2

]
, (11)

where C1 and C2 are the row vectors of equation (10).
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Figure 2: Beam with quadrilateral mesh.

(a) Quad mesh nodes (b) Initial mesh (c) First refinement

Similarly, if using quadrilateral elements, the discretized strain tensor field εn
is expressed in terms of the standard bi-linear basis functions {Ψn}

N
n=1 as-

sociated with the N vertices of the quadrilateral mesh. The beam is then
discretised into a structured mesh of non-overlapping quadrilateral elements,
as seen in Figure 2.

In the quadrilateral mesh case εij are piecewise bi-linear functions and their
derivatives with respect to x and y are piecewise linear functions; that
is, Nij ≡ Nij(x, y) and Mij ≡Mij(x, y) . Hence, the equilibrium equation (8)
is integrated over each element T , which leads us to∫

Ω

[N11(x, y) + νN22(x, y) + (1− ν)M12(x, y)] = 0 ,∫
Ω

[M22(x, y) + νM11(x, y) + (1− ν)N12(x, y)] = 0 .

(12)

This provides another system of equations

Cε = 0 , (13)

where C is the equilibrium integral matrix, which again has two rows. The
problem is reduced to the following minimisation problem: find a vector ε
such that

min
Cε=0

‖Kε− Iε‖2 . (14)

The minimisation problem (14) is solved using a least squares method [9].
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4 Simulation results for a test case
For analysis of strain parameters, a uniform isotropic cantilevered beam (plane
stress) subject to a load P, as shown in Figure 1b, is used as a test case. The
strain values of a reference sample were obtained from the literature [5, 3, 2].
The domain is Ω = [0, 12] × [0, 10] and the strain field within this plate is
approximated by the analytic solution

ε(x, y) =

 (L− x)y − (1+ν)
2

[(
W
2

)2
− y2

]
− (1+ν)

2

[(
W
2

)2
− y2

]
−ν(L− x)y

 P
EI
,

where Young’s modulus E = 200GPa, edge load P = 2 kN, beam length
L = 12mm, beam height W = 10mm, beam thickness t = 3mm, poisson’s
ratio ν = 0.3 .

The beam geometry was discretised into a number of elements using triangles
and quadrilaterals as shown in Figures 1 and 2, respectively. The minimisation
problem (14) was solved to obtain the reconstructed strain field. The L2 error
was calculated between the true and reconstructed strain field.

In the practical scanning procedure, the data is collected as a set of projections,
each of which defines a number of parallel lines sharing the same projection
angle θ. For our simulated example, the data consist of nine projections
evenly spaced in [0, 180◦]. The plot of beam reconstruction L2 error as a
function of the number of elements is shown in Figures 3 and 4. Since
εxx and εyy belong to the finite element space for quadrilaterals, numerical
approximations reproduce these functions even with a coarser mesh. However,
it can be seen from Figure 4 that the error of εxy has quadratic convergence.
We also obtain quadratic convergence in the triangular case but error values
are bigger compared to the quadrilateral case.
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Figure 3: log-log plot of the L2 convergence with triangular mesh.

Conclusion
The reconstruction of the tensor strain field distribution in a cantilevered
beam from a measurement of the transmission strain component has been
demonstrated. The solution of the strain field was constructed by using
standard basis functions, with a strain equilibrium condition enforced implic-
itly on the solution. We used a finite element method, with triangular and
quadrilateral meshes to reconstruct the tensor strain field distribution in a
cantilevered beam. The choice of basis functions for the forward mapping
is governed by consideration of the computational cost and the accuracy of
the numerical model. We hope that this work is an important step towards
deciding which mesh should be considered for real-life problems.
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Figure 4: log-log plot of the L2 convergence with quadrilateral mesh.
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