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Abstract

Biological reactors are employed in industrial applications to break
down organic waste from a range of sources into components that may
be used in other applications. Such reactors may involve complex
processes and many components linked by complicated interrelations.
These reactions are represented mathematically as nonlinear initial
value problems that must be solved numerically. Even smaller sys-
tems, more amenable to analytical analysis, require numerical solution
methods due to their nonlinearity. We study a simple reactor with
only two interacting components—a bacteria consuming a substrate
(waste), represented by a 2 x 2 autonomous nonlinear initial value
problem not solvable analytically. We describe a process to convert
this problem to an approximating linear one that can be solved exactly
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to provide a closed form approximate representation of the evolving

system. We assess the results of this approach and show they often

agree favourably with numerical computations of the original nonlinear

problem, although not always.
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Anaerobic digestion involves interactions between bacteria and organic waste
(the substrate), in the absence of oxygen. In this process, the bacteria
consume substrate, producing biogas, which is useful as fuel. The reaction
kinetics of anaerobic digestion have been described by several models of
varying complexity. The Anaerobic Digestion Model 1 (ADM1) [2] involves
over 30 state variables. A simpler model [3] involves four. Other models
vary in complexity [5, 6], but for all, analytical mathematical study is very
difficult. So, for detailed mathematical analysis, simple models incorporating
essential features of the process are required. Here, we study a simple model
involving two state variables which involves a Monod (Michaelis—Menten)
interaction [4] and is given by the initial value problem

dS  Sp—S(T)  F(S)MX(T) B
ﬁ - o) - Y ) S(O) - SO)

(1)
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dX Xy — X(T
P XD XM HSMXT), X0 =X, ()

where S
F(S) = ——.
(8) = s (3)

Here, S(T) and X(T) are substrate and bacteria concentrations, respectively
at time T. The Monod term governing growth rate of bacteria is F(S). The
maximum specific growth rate of bacteria is M, © is the hydraulic residence
time (the mean time a substrate or bacterium particle is in the system), K is
the bacteria death rate, Y is the ratio of bacteria to substrate concentration,
and K is the substrate concentration at half maximum specific growth rate.
The concentrations of substrate and bacteria entering the system are S¢ and X,
respectively, and Sy and X, are initial substrate and bacteria concentrations.

Here, we assume all parameters to be positive. In particular, X > 0, that
is, the nutrient feed stream contains bacteria. This contrasts with many
applications where Xg = 0 [1, p. 382], 7, p. 9]. We work with a dimensionless
version of the problem, by introducing dimensionless variables s, x and t, and
dimensionless parameters s¢ and x¢ defined by

S=Ks, X=KYx, t=MT, Sp=Ks;, Xg=KYxs. (4)

In terms of the dimensionless quantities, the system (1)—(3) converts to the
dimensionless form

dz(tt) — @(s;—s(t)) — f(s)x(t), s(0) =so, (5)
dz(tt) = @ (xr — x(t)) — px(t) + F(s)x(t),  x(0) =xo, (6)

where
e S o K S X
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The difficulty with the dimensionless model, and others, is that their non-
linearity means that any mathematical analysis is restricted to numerical
solutions. Numerical solutions have the weakness of being restricted to specific
data, and general trends are hard to identify.

In this article, we analyse the model (5)—(6) by approximating it to a linear
system which can be readily solved in general terms. This resulting solution
has the benefit of giving general expressions for s(t) and x(t) that display
the effects of significant parameters. We also investigate the degree to which
these expressions approximate the numerical solutions of (5)—(6).

2 Critical points and physically realistic
solutions

The initial value problem (5)—(7) is nonlinear and is not solvable exactly by
analytical methods. Consequently, numerical techniques must be resorted to.
However, (5)—(7) is autonomous so standard phase plane techniques may be
used to obtain qualitative information about solutions of the system.

In particular, it is a straightforward exercise to show that, for @ and p positive
and kg4, s¢ and x¢ non-negative, trajectories originating within the closed first
quadrant s > 0, x > 0 of the (s,x) (i.e., phase) plane are totally contained
within that quadrant. Thus, solutions of the initial value problem (5)—(7)
corresponding to initial values sy > 0, xo > 0 are non-negative functions for

allt > 0.

Here, we are interested in solutions of the problem (5)—(6) that approach a
finite limiting state (s*,x*) in s > 0 and x > 0 as t — oco. We term such
solutions physically realistic solutions.

For each finite critical point (s*,x*) of the nonlinear system (5)—(6) we asso-
ciate a solution of this system passing through the point (sg,%o). When (sg, Xo)
lies in the first quadrant, this solution is a physically real solution with (s*, x*)
as a limiting critical point. Note that there may be a number of such critical
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points, and each will correspond to a physically real solution for some initial
value (sg,Xo). That is, a critical point may have a domain of attraction.

Thus, the question arises as to how many stable critical points the system (5)-
(6) has in the first quadrant.

All critical points (s*,x*) are characterised as zeros of the right hand sides of
(5) and (6), that is, they are solutions of the system of two equations

@(sf—s) —xf(s) =0, (8)
@ (xf —x) — px +xf(s) =0. 9)

We first find x in terms of s by adding (8) and (9) and rearranging to give

X = (D(Sf +bxf - S) , (10)

where b=@ +p.

We note that if s; + x¢ < s*, then the critical point (s*,x*) would not lie in
the first quadrant. Thus, for (s*,x*) to be the limit point of a physically real
solution it is necessary that

Sf+Xf>S*. (11)

Substituting for x from equation (10) into equation (8) and using the first
of (7) results in a quadratic equation for s:

Q28> + q1s + qo =0, (12)

where
q2=b—1, qi=b+xs—qz5r, qo=—bss. (13)

Finding all real solutions of (12) and the corresponding bacteria concentrations
using (10) gives all the critical points (s*,x*); and those critical points lying in
the first quadrant provide limiting states of physically real solutions of (5)-(6).



3 The linearized system C234

The discriminant of (12) is easily shown to be positive for any b # 1 and zero
for b =1. So, real distinct solutions of (12) will occur if b # 1.

Note that since qo/q2 = —bss/(b — 1), then if b > 1 there is one positive
and one negative root, while if b < 1 there are two positive roots. We discard
the negative root, since it will not contribute to a physically realistic critical
point.

Of the positive roots, when b < 1, we find that the larger fails to meet
the criterion (11), so it is rejected, while the smaller satisfies (11). Thus,
corresponding to each of b # 1, we have a single critical point of (5)—(6) lying
in the first quadrant, s > 0, x > 0. This is given by

_ 7 ok
(s*,x*):( ot et Dl S‘)), bAT. (14)

Zqz b

When b = 1, equation (12) becomes q;s* 4+ qo = 0 resulting in

. % s 1
(S,X):<Tf)(f,7(f+5f <]_]—|—Xf>) (15)

Standard stability analysis based on the Jacobian J(s*,x*) of the right hand
side of (5)—(6) at (s*,x*) shows that the critical points described above are all
stable. In particular, it is straightforward to show that trJ(s*,x*) < 0, while
det J(s*,x*) > 0, so that if [tr J(s*,x*)]? —4det J(s*,x*) > 0, then (s*,x*) is
a stable node, while if [tr J(s*,x*)]* — 4det J(s*,x*) < 0, then (s*,x*) is a
stable spiral point.

3 The linearized system

Here, we use the critical point of the nonlinear system to construct a linearized
system with the same critical point as the nonlinear system. This linearized
system is constructed by replacing f(s) in (5)—(6) by f(s*), its value at a
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known stable, physically realistic, limiting state s = s*, when such a limiting
state exists. Using this replacement, we obtain the linear system

ds
T =@(sf—s)—f(s*)x, s(0)=-so, (16)
% +ox = @x¢, x(0) =x0. (17)

where x =b —f(s*) and b=@ +p.

We substitute x from (10) into (8), set s = s*, and rearrange to isolate f(s*),
to obtain

St + Xf — s*

oc:b—f(s*):b<#), (18)
and since s* < s¢ + x¢, we deduce o« > 0.

To see that the linear system has the same critical point as the nonlinear
system, we need only substitute the critical point (s*,x*) from the nonlinear
system into (16) and (17).

Since the Jacobian J(s,x) of the right hand sides of (16)—(17) has eigenvalues
—a, —w, the one critical point (s*,x*) of this system is always a stable node.
However, as noted above, as a critical point of the nonlinear system (5)—(6),
(s*,x*) may be a stable node or spiral point. To preserve the nature of (s*, x*)
and to enhance the ability of the linearized system to accurately reflect the
nonlinear system, we require, as above, that [tr J(s*,x*)]?—4 det J(s*,x*) > 0.

4 Exact solutions of the linearized system

Standard methods give the solution of the initial value problem (16)—(17) as

()]
x(t) = Boe ™ 4+ =, (19)
f(s* f(s*
s(t) = Eje ™ 4 s, + (s7) g o Xrls ), (20)

p—f(s*) o
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where

@
E():Xo—%, (21)

f(s*) x¢f(s*)
Ei=sh—s§si——— 7 F 29
1= 80— S¢ 0— f(s*) 0 ’ (22)

and « is given by (18). Note that (19)—(20) requires that p —f(s*) # 0. Since
« > 0, this solution will always approach a finite limiting state, namely
o wWXs Xff(S*)

X = — s* = s8¢ — . 23
O() f x ( )

A calculation shows that the critical points above agree with those of the
original nonlinear system.

When p — f(s*) =0, so that &« = @, the solution of (16)—(17) becomes

x(t) = Koe " + x¢, (24)

f *
s(t) =Kije ® 4 s¢ — (")

— Kof(s*)te @, (25)

where f(s")
s*)x
KoIXO—Xf, K]ZSO—Sf+ f.

As before, since @ > 0, this solutions will approach the limiting states (23).

5 Discussion

We now compare the numerical solutions of the original nonlinear system
to the exact analytic solutions of the corresponding linearized system. The
nonlinear system is linearized in a way that ensures that the critical points of
the linear and nonlinear systems are the same. We assume that the initial
conditions are physically real and therefore so > 0, xg > 0.
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Although the solutions of (5) and (6) will always remain in the positive
quadrant, s(t) > 0, x(t) > 0, if s > 0, xo > 0, then this is not the case
for the linear system. To see that x(t) > 0 for t > 0, note that x(t) cannot
become negative if xg > 0. To see this, assume the system evolves to the
point x(t) = 0, then x can only become negative if dx/dt < 0 at this point;
however, setting x = 0 in (17) we see that dx/dt = @x; > 0, so x(t) can never
be negative. However, it is possible, under certain circumstances, for s(t)
to become negative, which is clearly not physically realistic. Examining the
right hand sides of (16) and (17) shows us that trajectories may only leave the
first quadrant along that segment of the x axis for which @ sy — f(s*) x < 0.
In fact, for a trajectory originating in the first quadrant to cross the x axis,
there must be a t* > 0 such that the four conditions

s(t*) =0, ds/dt(t") <0, @s;—Ff(s")x(t") <0, dx/dt(t") <0 (26)

hold. These provide a necessary condition on the parameters and initial
conditions of the linearized problem for the existence of a non-physical solution.

However, even if solutions to the linear system are physically realistic for
t > 0, it does not follow that they will always approximate well those of the
nonlinear system. Numerical experiment shows that for values of b > 1 the
solutions from the linear system approximate those of the nonlinear system,
and that the approximation improves the larger b becomes. To see why this
is so we consider the differential equations for the differences x(t) —x;(t) and
s(t) — s1(t), where the subscript 1 denotes the solutions of the linear system
and no subscript those of the nonlinear system.

The differential equations that govern s(t) — s;(t) and x(t) — x;(t) are

d(s —s1)
dt
d(x —x)
dt

= —@(s—s1) —f(s")(x —x1) — (f(s) = f(s*))x, (27
= —a(x —x) + (f(s) — f(s*))x. (28)

Since x,x; — x* and s,s7 — s* ast — 00, s —s; and x — x; go to zero, and
the right hand sides of (27) and (28) go to zero as t — oo, convergence is
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not an issue. However, if the solutions of the linear system are to provide a
reasonable approximation for those of the nonlinear system, then we require
the s —s; and x — X7 to be close to zero for most of t > 0; that is, we require
the convergence of s —s; and x — X7 to be as rapid as possible. The question
then arises, how might the parameter values and initial conditions affect this
rate of convergence?

In (27) the only parameter is @ > 0, and increasing its value will increase
the rate of convergence of s — s; to zero. Looking at (28), similarly we see
that increasing o will increase the rate of convergence of x — x; . In addition,
it is straightforward to show that o = b — f(s*) is a monotonically increasing
function of b, which increases more rapidly after b = 1, so increasing b will
always increase the rate of convergence of x —x;. So, the observation that
convergence is rapid for b > 1 and increases as b increases is borne out by
this analysis.

The initial conditions also have an effect on convergence. When the linear and
nonlinear systems both start with the same initial conditions, x(0) = x;(0)
and s(0) = s1(0), the initial rates of change in (27) and (28) are given by
FIf(s(0)) — f(s*)1x(0) .

Figures 1 to 3 show comparisons between the solutions of the linearized
system (16)—(17) and numerical solutions of the nonlinear system (5)—(6) for
varying b values with all other data constant. Figure 1 for b = 1.5 shows very
good agreement over all of t > 0. In Figure 2, b = 1.01 and the effect of this
is shown in some discrepancies between plots, particularly in the transient
region near t = 0. Figure 3, with b = 0.85, shows marked differences between
numerical and analytic solutions over most of t > 0.

These results support our discussion above regarding the role of b in agreement
between solutions of the nonlinear and linear systems.

Clearly, there are many aspects of the approach to the problem (16)—(17) that
need investigation; and these are currently being explored by the first author.
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Figure 1: Linear and nonlinear system solutions with p = 0.8, @ = 0.7,

b=15,a0=0.642,s; =7.0,%x =0., xo =3.0 and sy = 8.0.
8_
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Figure 2: Linear and nonlinear system solutions with p = 0.31, @ = 0.7,

b=1.01, a =0.202, sy =7.0, xf = 0.7, xp = 3.0 and 5o = 8.0.
8_

0 25 5 75 10 125 15 175 20 22.5 25
t
|—x—s——xlinear—--slinear|




References C240

Figure 3: Linear and nonlinear system solutions with p = 0.5, @ = 0.35,

b=0.85,x=0.119, s =7.0, xf = 0.7, xo = 3.0 and 5o = 8.0.
8_
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