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First eigenvalue of Schrödinger operator of
space-like hypersurfaces
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Abstract

We introduce two Schrödinger operators of compact space-like hy-
persurfaces in a de Sitter space. If the hypersurfaces have constant
mean curvature or constant scalar curvature, we obtain some spectral
characterisations of totally umbilical space-like hypersurfaces by the
first eigenvalue of the Schrödinger operators.
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1 Introduction

Space-like hypersurfaces with constant mean curvature or constant scalar
curvature in an arbitrary Lorentz manifold play an important role in gen-
eral relativity. Space-like hypersurfaces in a Lorentz manifold have recently
been investigated by many researchers from both physical and mathematical
points of view. LetMn+1

1 (c) be an (n+1)-dimensional Lorentzian space form
with constant sectional curvature c. According to c > 0 , c = 0 or c < 0 ,
it is called a de Sitter space, a Minkowski space or an anti-de Sitter space,
respectively, and is denoted by Sn+11 (c), Rn+11 or Hn+11 (c). When c = 1 , we
denote the de Sitter space by Sn+11 . A hypersurface in a Lorentzian manifold
is said to be space-like if the induced metric on the hypersurface is positive
definite.

We know that hypersurfaces with constant mean curvature in a Riemannian
manifold Mn+1(c) of constant sectional curvature c are critical points of the
area functional under variations that keep constant a certain volume function.
Barbosa, do Carmo and Eschenburg [4] studied the stability for hypersurfaces
of constant mean curvature in Riemannian manifold. In analogy with the
case of constant mean curvature, questions of stability can be considered
for hypersurfaces with constant scalar curvature. Alencar, do Carmo and
Colares [2] extended the study of stability to hypersurfaces with constant
scalar curvature. As researched by C. Wu [16] for minimal submanifolds in a
unit sphere, Aĺıas et al. [3] and Cheng [9] studied the first eigenvalue of some
Jacobi operator of hypersurfaces with constant mean curvature or constant
scalar curvature in a unit sphere and obtained some spectral characterizations
of so called H(r)-torus Sn−1(r)×S1(

√
1− r2) or Riemannian product Sm(r)×

Sn−m(
√
1− r2), 1 6 m 6 n− 1 .

Comparing the stability for hypersurfaces with constant mean curvature or
constant scalar curvature in Riemannian manifolds, Barbosa, Oliker [5], Liu
and Deng [12] studied the stability for space-like hypersurfaces with constant
mean curvature or constant scalar curvature in Lorentz manifolds. From the
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results of Barbosa and Oliker [5, 6], we know that constant mean curvature
space-like hypersurfaces are solutions to a variational problem. They are crit-
ical points of the area functional for variations that leave constant a certain
volume function.

We define two Schrödinger operators LH and LR by (1) and (2) and obtain
some spectral characterizations of totally umbilical space-like hypersurfaces
by the first eigenvalue of the Schrödinger operator LH or LR.

Since space-like hypersurfaces have particular structure, from the definition of
the Schrödinger operator LH or LR, we notice that the Schrödinger operators
LH and LR are different from that of the Riemannian hypersurface which were
studied by Aĺıas, Barros and Brasil [3] and Cheng [9]. In the case of space-like
hypersurfaces, the first eigenvalues of LH and LR have special forms.

In a neighbourhood of a point x of the space-like hypersurface M, we choose
an orthonormal frame field {e1, . . . , en} such that hij = λiδij at x, where
hij are the components of the second fundamental form of M. Let H denote
the mean curvature of M. We introduce the operator φ by

〈φX, Y〉 = 〈hX, Y〉−H〈X, Y〉.

Putting φ =
∑

i,jφijωi ⊗ωj , where φij = hij − Hδij , we can see that φ is
traceless, that the basis {e1, . . . , en} also diagonalizes φ at x with eigenvalues
µi = λi −H , and that

|φ|2 =
∑
i

µ2i =
1

2n

∑
i,j

(λi − λj)
2 = S− nH2,

where S denotes the norm square of the second fundamental form of M. We
know that |φ|2 ≡ 0 if and only if M is totally umbilical.

Before announcing our main results, we introduce the following Schrödinger
operators:

LH = −∆+ |φ|2 −
n(n− 2)√
n(n− 1)

H|φ|, (1)
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LR = −�+
1

nH
|φ|4 +

1−H2

H
|φ|2, (2)

where the differential operator

�f =
n∑

i,j=1

(nHδij − hij)fij ,

for any C2-function f, which was introduced and used by S. Y. Cheng and
Yau [11]. Now we state our results.

Theorem 1 Let M be an n-dimensional compact orientable space-like hy-
persurface in an (n+1)-dimensional de Sitter space Sn+11 with constant mean
curvature H. Denote by λLH1 the first eigenvalue of the Schrödinger opera-
tor LH. If λLH1 > −n(1−H2), then M is totally umbilical.

Theorem 2 Let M be an n-dimensional compact orientable space-like hy-
persurface in an (n+1)-dimensional de Sitter space Sn+11 with constant scalar
curvature n(n − 1)R (R < 1). Denote by λLR1 the first eigenvalue of the
Schrödinger operator LR. Then

λLR1 6
n− 2√
n(n− 1)

max |φ|3 and λLR1 =
n− 2√
n(n− 1)

max |φ|3,

if and only if M is totally umbilical.

2 Preliminaries

Let M be an n-dimensional space-like hypersurface in an (n+1)-dimensional
de Sitter space Sn+11 . We choose a local field of semi-Riemannian orthonormal
frames {e1, . . . , en+1} in Sn+11 such that at each point of M, {e1, . . . , en} span
the tangent space of M and form an orthonormal frame there. We use the
following convention on the range of indices:

1 6 A,B,C, . . . 6 n+ 1 ; 1 6 i, j,k, . . . 6 n .
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Let {ω1, . . . ,ωn+1} be the dual frame field so that the semi-Riemannian met-
ric of the de Sitter space Sn+11 is ds̄2 =

∑
iω

2
i −ω

2
n+1 =

∑
A εAω

2
A , where

εi = 1 and εn+1 = −1 .

Restrict to M,
ωn+1 = 0 . (3)

Cartan’s Lemma implies that

ωn+1i =
∑
j

hijωj , hij = hji . (4)

The Gauss equation is

Rijkl = (δikδjl − δilδjk) − (hikhjl − hilhjk), (5)

where Rijkl are the components of the curvature tensor of M and

h =
∑
i,j

hijωi ⊗ωj (6)

is the second fundamental form of M. From the above equation,

n(n− 1)(R− 1) = S− n2H2, (7)

where n(n− 1)R is the scalar curvature of M, H is the mean curvature and
S =
∑

i,j h
2
ij is the norm square of the second fundamental form of M.

The Codazzi equation is
hijk = hikj . (8)

We consider the differential operator � defined by

�f =
∑
i,j=1

(nHδij − hij)fij , (9)

where df =
∑

i fiωi ,
∑

i,j fijωj = dfi +
∑

j fjωji .
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We know that the Laplace–Beltrami operator ∆ is always elliptic. From
the discussion of Cheng and Yau [11], we know that the operator � is self-
adjoint, and from the result of Cheng and Ishikawa [10], we know that if
M is an n-dimensional space-like hypersurface in Sn+11 with constant scalar
curvature n(n− 1)R and R < 1 , then � is an elliptic operator (see a Lemma
of Cheng and Ishikawa [10]). Let λLH1 and λLR1 be the first eigenvalues of the
Schrödinger operators LH and LR, respectively. Since ∆ and � are elliptic
operators, from (1) and (2) we know that LH and LR are elliptic operators.
We can use the min-max characterisation of λLH1 and λLR1 , as

λLH1 = min

{∫
M
fLH(f)dv∫
M
f2 dv

: f ∈ C∞(M), f 6≡ 0
}

, (10)

λLR1 = min

{∫
M
fLR(f)dv∫
M
f2 dv

: f ∈ C∞(M), f 6≡ 0
}

. (11)

From the result of Brasil Jr. et al. [7], we know that if M is a orientable
space-like hypersurface with constant mean curvature H in Sn+11 , then

1

2
∆|φ|2 = |∇φ|2 +

(
|φ|2
)2

− nH trφ3 + n(1−H2)|φ|2

> |∇φ|2 + |φ|2

{
|φ|2 −

n(n− 2)H√
n(n− 1)

|φ|+ n(1−H2)

}
, (12)

where the following result due to Okumura [14] and Alencar, do Carmo [1]
is used:

Let µ1,µ2, . . . ,µn be real numbers such that
∑

i µi = 0 , and∑
i µ

2
i = β

2, where β = constant > 0 , then

−
n− 2√
n(n− 1)

β3 6
∑
i

µ3i 6
n− 2√
n(n− 1)

β3, (13)

and equality holds in (13) if and only if at least (n − 1) of the
numbers µi are equal.
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From the calculation of Liu [13] or Shu [15], we conclude that for orientable
space-like hypersurfaces with constant scalar curvature n(n− 1)R in Sn+11 ,

�(nH) = |∇h|2 − n2|∇H|2 +
(
|φ|2
)2

− nH trφ3 + n(1−H2)|φ|2

> |∇h|2 − n2|∇H|2 + |φ|2

{
|φ|2 −

n(n− 2)H√
n(n− 1)

|φ|+ n(1−H2)

}
,

(14)

and if R < 1 , then
|∇h|2 > n2|∇H|2. (15)

3 Proof of theorems

We firstly state a proposition proved by making use of a method similar to
that used by C. Wu [16] or A. A. Barros et al. [8] for a Riemannian manifold.

Proposition 3 Let M be an n-dimensional space-like hypersurface in an
(n+ 1)-dimensional de Sitter space Sn+11 . Then

∣∣∇|φ|2∣∣2 6 4n|φ|2
n+ 2

|∇φ|2. (16)

Proof: We easily see that φij = hij − Hδij with eigenvalues µi = λi − H
and φ is traceless, that is,

∑
kφkk = 0 . By the Cauchy–Schwarz inequality

∣∣∇|φ|2∣∣2 = 4∑
k

(∑
i,j

φijφijk

)2
= 4
∑
k

(∑
i

µiφiik

)2

6 4
∑
i

µ2i

∑
i,k

(φiik)
2 = 4|φ|2

(∑
i

(φiii)
2 +
∑
i,k,k 6=i

(φiik)
2

)
. (17)
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Since φ is traceless, φiii = −
∑

k,k 6=iφkki . Thus

∑
i

(φiii)
2 =
∑
i

(∑
k,k 6=i

φkki

)2
6 (n− 1)

∑
k,i,k 6=i

(φiik)
2.

From above two inequalities,∣∣∇|φ|2∣∣2 6 4n|φ|2 ∑
k,i,k 6=i

(φiik)
2.

From (8), we know that φijk are symmetric for the three indices i, j,k. By
the above inequality and (17),∣∣∇|φ|2∣∣2 = |φ|2

∑
i,j,k

(φijk)
2

= |φ|2

(∑
i

(φiii)
2 + 3

∑
i,k,i 6=k

(φiik)
2 + 6

∑
i<j<k

(φijk)
2

)

> |φ|2

(∑
i

(φiii)
2 +
∑
i,k,i6=k

(φiik)
2 + 2

∑
i,k,i6=k

(φiik)
2

)

>
1

4

∣∣∇|φ|2∣∣2 + 1

2n

∣∣∇|φ|2∣∣2 = n+ 2

4n

∣∣∇|φ|2∣∣2 .

This completes the proof of Proposition 3. ♠

Proof of 1: Since M is orientable, we assume that H > 0 . For every
ε > 0 , from (10), we introduce a smooth function fε =

√
ε+ |φ|2 as the test

function to estimate λLH1 . Then

∆fε =
1

2
√
ε+ |φ|2

∆|φ|2 −
1

4(ε+ |φ|2)3/2

∣∣∇|φ|2∣∣2 . (18)
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From (12) and (18) and Proposition 3,

fε∆fε =
1

2
∆|φ|2 −

1

4(ε+ |φ|2)

∣∣∇|φ|2∣∣2
> |φ|2

{
|φ|2 −

n(n− 2)H√
n(n− 1)

|φ|+ n(1−H2)

}
+ |∇φ|2 − 1

4(ε+ |φ|2)

∣∣∇|φ|2∣∣2
> |φ|2

{
|φ|2 −

n(n− 2)H√
n(n− 1)

|φ|+ n(1−H2)

}

+

{
1−

n|φ|2

(n+ 2)(ε+ |φ|2)

}
|∇φ|2.

Therefore,

fεLHfε =− fε∆fε +

{
|φ|2 −

n(n− 2)√
n(n− 1)

H|φ|

}
f2ε

6− |φ|2

{
|φ|2 −

n(n− 2)H√
n(n− 1)

|φ|+ n(1−H2)

}

−

{
1−

n|φ|2

(n+ 2)(ε+ |φ|2)

}
|∇φ|2

+

{
|φ|2 −

n(n− 2)√
n(n− 1)

H|φ|

}
(ε+ |φ|2).

Using (10) with fε as a test function,

λLH1

∫
M

(ε+ |φ|2)dv =λLH1

∫
M

f2ε dv 6
∫
M

fεLH(fε)dv

6−

∫
M

|φ|2

{
|φ|2 −

n(n− 2)H√
n(n− 1)

|φ|+ n(1−H2)

}
dv
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−

∫
M

{
1−

n|φ|2

(n+ 2)(ε+ |φ|2)

}
|∇φ|2 dv

+

∫
M

{
|φ|2 −

n(n− 2)√
n(n− 1)

H|φ|

}
(ε+ |φ|2)dv . (19)

Letting ε→∞ in (19),

λLH1

∫
M

|φ|2 dv 6 −n(1−H2)

∫
M

|φ|2 dv−

∫
M

2

n+ 2
|∇φ|2 dv. (20)

Since λLH1 > −n(1 − H2), from (20), |∇φ|2 = 0 . Proposition 3 implies
that ∇|φ|2 = 0 , that is, |φ|2 is constant. Therefore, we know that |φ|2 −
(n(n − 2)/

√
n(n− 1))H|φ| is constant. From (1), we obtain that λLH1 =

|φ|2 − (n(n− 2)/
√
n(n− 1))H|φ|. So

−n(1−H2) 6 |φ|2 −
n(n− 2)√
n(n− 1)

H|φ| ,

that is

|φ|2 −
n(n− 2)√
n(n− 1)

H|φ|+ n(1−H2) > 0 .

Therefore, we know that the equalities in (12) and (13) hold and

|φ|2

{
|φ|2 −

n(n− 2)√
n(n− 1)

H|φ|+ n(1−H2)

}
= 0 .

This implies that |φ|2 = 0 , that is, M is totally umbilical, or

|φ|2 −
n(n− 2)√
n(n− 1)

H|φ|+ n(1−H2) = 0 .

In this case, the equalities hold in (13) and it follows that M has at most two
distinct constant principal curvatures. We conclude that M is totally um-
bilical from the compactness of M. This completes the proof of Theorem 1.

♠
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Proof of 2: Since R < 1 , from the assertion in section 2 and the Gauss
equation (7), we know that the operator � is elliptic and n2H2 = S+n(n−
1)(1 − R) > 0 . Hence, H 6= 0 . Since M is orientable, we can assume that
H > 0 . Thus, from (11), we introduce a smooth function f = H as the test
function to estimate λLR1 . By (2) and (14),

LR(H) = −�(H) +
1

n
|φ|4 + (1−H2)|φ|2

6−

{
1

n
|∇h|2 − n|∇H|2 + 1

n
|φ|4 + (1−H2)|φ|2 −

n− 2√
n(n− 1)

H|φ|3

}
+
1

n
|φ|4 + (1−H2)|φ|2

=−

(
1

n
|∇h|2 − n|∇H|2

)
+

n− 2√
n(n− 1)

H|φ|3. (21)

From (11) and (15),

λLR1

∫
M

H2 dv 6
∫
M

HLR(H)dv

= −

∫
M

H

(
1

n
|∇h|2 − n|∇H|2

)
dv+

∫
M

n− 2√
n(n− 1)

H2|φ|3 dv

6
∫
M

n− 2√
n(n− 1)

H2|φ|3 dv 6
n− 2√
n(n− 1)

max |φ|3
∫
M

H2 dv .

(22)

Thus,

λLR1 6
n− 2√
n(n− 1)

max |φ|3.

If λLR1 =
[
(n−2)/

√
n(n− 1)

]
max |φ|3, then the equalities in (22), (21), (15),

(14) and (13) hold. Since the operator � is self-adjoint and M is compact,
from (14), we obtain that∫

M

|φ|2

{
|φ|2 −

n(n− 2)H√
n(n− 1)

|φ|+ n(1−H2)

}
dv = 0 .
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This implies that |φ|2 = 0 and M is totally umbilical, or

|φ|2 −
n(n− 2)H√
n(n− 1)

|φ|+ n(1−H2) = 0 . (23)

By the Gauss equation (7), (23) is equivalent to

|φ|2−
n− 2

n− 1
|φ|
√
|φ|2 − n(n− 1)(R− 1)

+ n

(
1−

1

n(n− 1)
|φ|2 + (R− 1)

)
= 0 . (24)

Since the scalar curvature n(n − 1)R is constant, from (24), |φ| is constant.
By the equalities of (13), we know that M has at most two distinct constant
principal curvatures. We conclude that M is totally umbilical from the com-
pactness of M. This completes the proof of Theorem 2. ♠
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