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2.5D point clouds: A mesophotic gorgonian
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Abstract

A method for the surface reconstruction of 3D tubular branched
structures characterized by low informative point clouds (i.e., 2.5D) is
proposed. These specific clouds can arise when using photogrammetry
techniques on complex subjects in challenging scanning environments
(e.g., underwater gorgonian coral at mesophotic depths). The core idea
behind the proposed Sphere Skeleton Approach (ssa) is to approximate
the assumed tubular shapes via merged spheres having variable radii and
centered in the points of the medial skeleton. To assess the generality
and robustness of the proposed ssa, additional experiments have been
conducted on 2.5D point clouds that were synthetically generated from
3D model benchmarks. Hausdorff distances between the target and the
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reconstructed 3D models are used to quantitatively compare the ssa
performances to a classical meshing algorithm. Early results highlight
the capability to outperform existing approaches in reconstructing
objects from 2.5D clouds.
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1 Introduction
Significant developments in Computer-Aided Design (cad) have been achieved
and three-dimensional (3D) digitization of physical objects has now been used
proficiently in a wide array of fields [3]. In particular, applying 3D digitization
methods to marine sessile organisms, such as corals in deep-reef environments,
is an additional challenge that continually refines computational proficiency
and helps us to understand growth patterns and responses to hydrodynamic
forces. The motivation of this study is to present a solution to a problem that
arose during the 3D reconstruction of a Indo-Pacific gorgonian coral, Annella
Gray, 1858 (Cnidaria: Octorallia) (Figure 1).
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Figure 1: Three figures of the Annella coral; 60 meters depth, outer reef slope
of Palikir Pass Marine Reserve, Pohnpei [12], Federated States of Micronesia.

Figure 2: Isometric view of the Annella 2.5D point cloud with (left) 389 777
points and (right) unsatisfactory Metashape mesh reconstruction.

Due to the fragility of the corals and underwater environment, an in-situ
contact-less approach was used (i.e., Structure-from-Motion (SfM) photogram-
metry). After processing the 22 close-range underwater images of the Annella
(Figure 1) into Agisoft Metashape Professional Edition, Version 1.5. [1], a
2.5D dense cloud was extracted (Figure 2, left). A 2.5D point cloud is defined
as a cloud that belongs to an embedded surface in R3 whose atlas is composed
of a single chart or patch. In other words, a 2.5D cloud Y can be obtained
from a 2D cloud set that we denote by X ∈ R2 , through a bijective function
f : X → Y .

Despite its flexibility, when discriminative point features are insufficient,
SfM photogrammetry produces more challenging points clouds (e.g., 2.5D)
to manage during the reconstruction process compared to more accurate
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approaches (e.g., Laser Imaging Detection and Ranging (lidar) [3]). In the
tubular 3D branched Annella coral case, for example, the 2.5D cloud could be
a consequence of numerous unfavourable features of the subject (e.g., thinness,
front-back symmetry and self-replication) as well as the challenging deep
underwater conditions.

Unfortunately, there was a shortage of methods capable of reconstructing
2.5D point clouds when searching the literature or using commercial software.
As shown in Figure 2 (right), the 2.5D point cloud is a source of serious issues
in the final step of the Metashape [1] workflow (i.e., mesh generation). At a
glance this causes huge distortion in the final model since the 3D volumetric
tubular structure of the branches is completely missing.

The idea behind our contribution is to fill the gap in reconstructing 2.5D
point clouds by retrieving two basic topological types of information from the
subject stored in the 2.5D point cloud (i.e., radii and skeleton) to reconstruct
the tubular 3D shape.

2 Skeleton-based reconstruction techniques
The method in this study is largely based on the results and ideas of skeleton-
based approaches [3]. Among a broad spectrum of techniques we propose to
use the “L-1 Medial Skeleton” algorithm [7], because of its capacity to deal
with complex point clouds (e.g., 2.5D). As demonstrated by Mei et al. [11] a
tree structure reconstruction from an incomplete point cloud was successfully
achieved using the L-1 Medial Skeleton. Contrary to Mei et al. [11], we do
not use an iterative optimization process to repair the regions of missing data.
Instead, our proposed Sphere Skeleton Approach (ssa) approximates the
cylindrical shapes by using techniques that address industrial pipe meshing
problems [8] and using an adapted heuristic with particular relevance to the
radii of the branches.

The idea of computing a skeleton and using it for reconstruction is also
correlated to a remarkable work on wire object modeling [9]. In this work the



3 Proposed ssa method C5

reconstruction of the complex point cloud of tubular objects was provided.
However, no variable radius was accounted for and, therefore, is not applicable
for our aim. Additional methodologies for tubular subjects reconstruction
have been developed using skeleton-based reconstruction methods but none
seem suitable for 2.5D clouds.

3 Proposed ssa method

3.1 Environment and equipment

Data was collected from the outer reef slope of Palikir Pass Marine Reserve,
Pohnpei, Federated States of Micronesia (6 59030:000 N, 158 08013:100 E;
Permit No.: mpa-0017). Underwater imagery of the gorgonian coral Annella
(Figure 1) was conducted at 60 meters depth using mixed gas closed circuit
rebreather diving technology (Divesoft Liberty ccr, with a Sony rx100mkv
camera, inon uwl-h100 28m67 Type 2 wet lens, Nauticam narx100v
waterproof housing, and Sola light configuration. All field data were collected
under the auspices of the British Sub-Aqua Club (bsac; technical branch).

3.2 Skeleton points extraction from 2.5D cloud

As previously highlighted, after processing the underwater imagery of the
Annella (Figure 1) into Metashape [1], a 2.5D dense cloud was extracted
(Figure 2, left). From hereon, P = point-set ∈ Annella 2.5D point cloud
refers to the specific 2.5D point cloud from Figure 2 (left). The main steps of
the adopted L-1 Medial Skeleton algorithm are as follows: (i) random selection
of sample points from P; (ii) iterative projection onto a skeletal point cloud
with a gradually increasing neighborhood size; (iii) down-sampling, smoothing,
and re-centering, in order to obtain the final central axis point cloud S =
point-set ∈ Annella 2.5D point cloud skeleton. Figure 3 graphically shows the
skeleton point cloud extraction process.
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Figure 3: A close up view of S extraction adopting the algorithm presented
by Huang et al. [7]. The panels show three consecutive steps from left to
right: the initial condition, after ten iterations, and after ten more iterations.

Algorithm 1 ssa pseudo-code
1: Extract the point cloud skeleton S frrom P
2: Define r0, k and inc%

3: for each pointj(xj, yj, zj) ∈ S do
4: Calculate the point density function
5: Evaluate the rules
6: Save the rj

7: Remove r-vector oversized outliers
8: for each pointj(xj, yj, zj) ∈ S do
9: Mesh the sphere j with rj

10: Merge all the spheres and post process

3.3 Spheres construction

Algorithm 1 approximates the assumed tubular shape by the use of an heuristic
that merges primitive geometries (i.e., spheres) whose centers are the points
that belongs to S and the radii are detected using P as a reference.

Explanation of lines 1–6 (Algorithm 1): After S (i.e., vector of spheres’
centers) has been extracted (Section 3.2), define three parameters: (i) r0 =
initial radius of the sphere; (ii) k = number of iterations for the sphere radius
increment; (iii) inc% = percentage increment at each iteration. All the above
parameters are defined by a heuristic approach (e.g., visual tests on S and P).
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In the following step choose r = r0 and let qj ∈ S . We construct the set:
Nqj

(r) = {qi ∈ P , ‖qi−qj‖22 6 r2} . We introduce nqj
= #Nqj

(r) the cardinal
of set Nqj

(r) and we define the PointDensity function for the skeleton point qj

as fj(r) = nqj(r)/r
2 . The process is iterative with k and r = r0(1+ inc%)

k .

The idea behind the PointDensity function is to allow for automatic detection
of changes using its qualitative behavior as the radius r varies. Under the
assumption of sufficient and uniformly distributed data, a change in qualitative
behavior can, for instance, signal that r might overcome the local size of the
branch and the iteration process needs to be stopped.

In order to detect those changes, once the PointDensity function fj(r) is
calculated for each iteration step k, the local maxima of fj(r) are identified
and labeled (Figure 4, left). After that, a set of experimental rules have been
developed as follows: (i) if no local maximum, then rj = rmax , where rmax is
the upper bound after k iterations; (ii) if there is exactly one local maximum,
then rj is the radius corresponding to that local maximum; (iii) if the absolute
maximum is attained at the lowest radius from the set of local maxima, then
rj is set as the radius of the second highest local maximum; (iv) else, rj is set
as the radius for which the PointDensity attains its absolute maximum.

Explanation of lines 7–10 (Algorithm 1): To remove oversized radii,
for each point qj ∈ S , select all the points in S whose spheres have rq < rj .
We call the set formed by those points Sqj

and we denote by nj its cardinality.
Similarly, select all the points in S related to those spheres with a rq < 0.5rj .
We call the set formed by those points S ′

qj
and we denote by pj its cardinality.

If the ratio between pj and nj is lower than a prescribed threshold (e.g., good
experimental results suggested 90%), no changes need to be applied to rj.
Otherwise, we downsized the sphere by applying rj =

∑
q∈S ′

qj

rq/pj .

Convert the final 3D model to a mesh, merge the spheres and post-process.
In this case, to address the intersections of the spheres, Boolean union were
applied [6]. Figure 4 (right) shows the final reconstruction for the Annella.
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Final SSA reconstructionPointDensity function fj(r) for a random skeleton point qj ∈ S
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Figure 4: (Left) Local maxima sorted from the largest (i.e., first) to the
smallest (i.e., sixth) and related close-up views of the sphere growth until the
final rj selection (i.e., dotted line and green window) for a random point qj.
(Right) Isometric view of the Annella ssa reconstruction.

4 Experimental benchmarking results
Due to the lack of a given 3D model and the incompleteness as well as
distortion of the cloud data for the Annella case, a comparative analysis with
respect to a reference was missing. To address this issue, the quality of ssa
was measured on experimental examples where the given 3D models were
known beforehand (Figure 5).

In particular, and motivated by the idea of synthetic scanning [2], we first
simulated the 2.5D point clouds by extracting them from the ground-truth
models, on which we then apply ssa for the 3D reconstruction. For the exper-
iments we considered objects having structures quite close to the Annella (i.e.,
leaf and cactus Figure 5, first and second rows, respectively) and deliberately
unrelated highly variable circular cross sections (i.e., dino Figure 5, third
row).
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Figure 5: From left to right: given 3D mesh [14, 13]; synthetic 3D point
cloud extracted from the envelope of the 3D structure; synthetic 2.5D point
cloud (red) as a union of 2.5D clouds to retain the presence of the appendages
of the 3D subjects and skeleton point cloud (black); ssa output using 2.5D
point cloud as input; bpa output using 2.5D point cloud as input.

We then compared the outputs against the target meshes, computing the
Hausdorff distance to represent the error, utilizing the algorithm implemented
by Cignoni et al. [6]. This metric is calculated by sampling a collection of
points over the surface of one of the two meshes (i.e., sampled), and finding
for each sample the closest point over the other mesh (i.e., reference).

For a better assessment of our methodology, a classical interpolation technique
(i.e., the Ball Pivoting Algorithm (bpa) [4]) implemented in Meshlab [6], was
tested as well. We selected this algorithm as an arbitrary representative exam-
ple among uncountable, less or more recent or advanced meshing algorithms,
which are intrinsically unable to catch the 3D nature of the models from a
2.5D point cloud. Parameters adopted for ssa are shown in Table 1 (ssa
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Table 1: Adopted ssa parameters and normalized Hausdorff distance for ssa
and bpa. Note that rms stands for Root Mean Square.

ssa parameters Hausdorff distance
Object r0 k inc% Mean% Max% rms%

ssa-bpa ssa-bpa ssa-bpa
Leaf 0.5 35 15 0.2–0.1 1.2–1.4 0.2–0.2
Cactus 0.003 20 14 0.7–2 3–4 0.8–2
Dino 0.01 30 15 0.3–3 6–9 0.6–4

parameters), while bpa adopted the default ones [6]. Aggregate statistics
normalized with respect to the Bounding Box Diagonal (bbd) both for ssa
and bpa are shown in Table 1 (Hausdorff distance).

5 Discussion and future developments
From Table 1 (Hausdorff distance) we deduce that our method approximates
the target 3D models with a maximum error of approximately 6% bbd.
Nonetheless, on average, the errors are almost in the 0.6% range. Looking
qualitatively at Figure 5, it is evident that our method has outperformed the
classical bpa methods for all of the experimental examples. The leaf model
stands out due to having better results from the classical method for the
given metrics but fails to reproduce the tubular 3D structure and, therefore,
is not satisfactory.

Among the major limitations of the proposed ssa is the need for a tubular
subject with a 2.5D point cloud. Moreover, the outputs from ssa are not
perfectly accurate but do perform better than existing algorithms for this
type of challenging 2.5D raw point cloud.

As for future developments, automated skeleton curves extraction from a 2.5D
point cloud is still an open challenge in complex cases such as the Annella
coral, and alternative algorithms could be considered. Implicit modeling (e.g.,
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metaballs [5]) during the merging of spheres could reduce the post-processing
step and this aspect deserves attention as well. More mathematically robust
and general techniques such as topological data analysis is also ongoing [15].
The difficulty is that because of the irregular shape of the holes in between
the branches within the Annella colony, it is unlikely that observing changes
in homology would help determine the optimal radius. Nonetheless, implicit
or prior knowledge related to self-repetitive fractal structures may help [10].

6 Conclusion
A Sphere Skeleton Approach (ssa) for automated surface reconstruction of
2.5D point clouds has been proposed assuming a tubular shape of the subject
and approximating the surface by primitive geometries (i.e., spheres) centered
in the skeleton points. A practical application of 2.5D biological point clouds
has been presented from one of the most challenging scanning environments.
An evaluation on a set of three synthetic 2.5D point clouds generated from
benchmarks have been conducted as well.

The proposed ssa overcomes the problems of reconstructing 3D fine structures
and captures the refined topology as closely as possible, starting from a low
amount of information stored in the 2.5D point clouds. These lessons will
help drive research in surface reconstruction and development of new software
tools and algorithms for 2.5D point clouds.
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