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Role of vibration in solid-liquid separation
using a vacuum belt filter
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Abstract

Modelling and analysis are carried out for stages of de-watering
mineral slurry on a vacuum-belt filter, with a patented vibrating roller
module called ‘Viper’ situated atop the formed cake. The long-term
goal here is to improve the efficacy of the dewatering since enhancements
by as little as 1% solid mass fraction have significant economic benefits.
We show that Darcy’s law accurately models the dewatering process
through a clogging filter mat until no more water can be extracted using
mere vacuuming, and the predicted solid mass fraction is in accordance
with available data. It is shown that after this initial de-watering
stage, air fingers are formed in accordance with Saffman–Taylor theory,
thereby releasing the hydraulic pressure gradient and de-watering ceases
as a result. The Viper units break up these fingers, thus facilitating
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further de-watering. Estimates of the time span of development of the
air fingers are made using extended Saffman–Taylor theory and these
are used to determine the optimal spacing of the Viper units. At the
vibrational frequencies used in Viper units, the estimated Deborah
number is small enough so that liquefaction is expected to occur; this
would explain the efficacy of the Viper device.
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1 Introduction

This is a group report on a challenge brought to the February 2022 Math-
ematics in Industry Study Group hosted by the University of Newcastle in
Australia. Jord International (NSW, Australia) asked the Study Group to
develop a mathematical model that could help to improve the dewatering of
slurry in a vacuum-belt filter when using Viper technology.

During the early stages of processing and refinement, mineral ores are crushed
and mixed with water to form a slurry. At some stage, the solids must be
separated and the water returned to a pond. Incremental improvements in
solid mass fractions by as little as 1% may have large economic benefits.

One method used world-wide is the vacuum belt filter. A conveyor belt,
typically 30m long, conveys the mixture, typically for three minutes. During
that time, a vacuum pump system maintains the pressure below the belt at
around 0.7 atmospheres. The surface of the slurry above the belt is at a
pressure of one atmosphere, Patm.

The resulting pressure gradient drives the liquid downwards through perfora-
tions in the belt. Solid particles are collected on a filter mat of around 2.5mm
thickness attached to the belt. In the data on crushed coal slurry provided by
the Jord company, the slurry enters at a depth of around 15 cm and at 18%
solids by mass (wet basis). The material leaves as a well-formed cohesive cake
containing 70% or more solids by mass.

Jord found that the final solid mass content is improved to 75% if the newly
formed cake, with negligible overlying water at around 16–18m along the belt,
passes under a 30 cm roller whose axle is attached to a Viper that vibrates at
frequency 50Hz and amplitude 2mm (Figure 1).

A mathematical model for this operation is sought, in the hope that it will
lead to a better understanding of the process. In the future, the model may
provide guidance as to how to optimise performance, for example to help
decide the optimal number and placement of the Viper units.
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Figure 1: Schematic layout of working vacuum belt (not to scale).

The solid/fluid mixture has different characteristics along three distinct
segments of the belt. They are the super-saturated slurry region at the input
end, the unsaturated cake at the far end, and the emergent cake which is
saturated over a few metres in the intermediate region where a thin film of
water is observed above its surface. The Viper often operates in this region,
see Figure 1.

Along the belt, water is drawn through a filter mat of thickness 2.5mm,
leaving behind a sediment consisting of solid particles that form a porous
matrix.

From the geometry of the system it is convenient to use Cartesian coordinates x
for horizontal distance along the belt and z for vertical distance above the belt.
In experiments little variation is observed in the third dimension, labelled
by horizontal distance y from one edge across the width of the belt, and
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variation in this direction is not considered in our modelling. The belt width
associated with the collected data is 4.2m.

In a reference frame attached to the belt, the sediment layer has an increasing
height D(t). At x values in the range 0 < x < xc , above the sediment there is
a liquid slurry up to height Z(t) that is decreasing in time as water is removed.
Define Z0 = Z(0) which is taken to be 15 cm, from the data supplied by Jord
for a particular implementation.

In a reference frame attached to the ground, the belt moves at uniform velocity
ẋ = u0 and the time averaged steady profile is Z(x/u0) for the slurry surface
and D(x/u0) for the sediment surface.

At a critical location x = xc there is a form line where Z −D = 0 and the
uncovered cake surface emerges. The cake is already close to its final height
which is observed to be Dc = 4.0 cm. The form line has some curvature but
that is neglected in our one-dimensional model.

From measured solid mass fractions fs sampled at stations x = 15m and 18 m
it is known that xc is intermediate between those two values. At x = 16.5m ,
the roller interacts with saturated pliable formed cake. In the example
calculations the form line is predicted a priori to be at xc = 16.0m.

For a short distance thereafter, there are some fluctuations of depth of an
overlying thin film as surface water waves ebb and flow. This is the region
where the roller and Viper are often placed. At larger values of x, the cake is
unsaturated as progressively more water is removed, leaving air-filled channels.

2 The Super-Saturated Slurry

In the industry, concentrations are most conveniently expressed in terms of the
solid mass fraction fs. For flow through porous media, the state of the system
is conventionally expressed in terms of volumetric water concentration θ. It
is useful to convert between these two descriptions. Consider a sample of
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mass M and volume V separated into solid and liquid water components.
Densities of the solid and liquid components are ρs and ρw. At the slurry
boundary locations x = 0 and x = xc there is one free boundary. The mixture
is close to uniform, with one solid and one fluid component. In that situation,
for a local sample of mass M and volume V,

M = ρwθV+ ρs(1− θ)V , fs =
ρsV(1− θ)

ρsV(1− θ) + ρwVθ
,

⇐⇒ θ =
(1− fs)(ρs/ρw)

1+ (1− fs)(ρs/ρw − 1)
.

For anthracite, the relative density is typically ρs/ρw = 1.4 . At the inlet
fs = 0.18 so volumetric water content is θ0 = 0.865 . This exceeds the
porosity of any known sediment, with soil porosities being less than 0.6. This
means that the mixture is a slurry within which the solid particles are not
connected, offering little resistance to water flow.

Below the belt, the vacuum system lowers the pressure to 0.7 atmospheres,
P = 0.7Patm . Therefore the flow is predominantly downwards. Hence it is
reasonable to consider a quasi-one-dimensional flow.

In a reference frame attached to the belt, the mass and volume of solid within
a vertical slice is constant. Therefore at the form-line location xc where the
mixture has depth Dc and water content θc, the equivalent depth of pure
solid is Ds = 2.00 cm. Then

Dc(1− θc) = Z0(1− θ0) = 2.00 cm (constant).

Assuming Dc = 4.00 cm, this equation gives θc = 0.500 . Since at this
location the porous matrix is fully saturated with no slurry visible on top,
θc is the saturated water content, conventionally labelled as θs. This provides
an estimate of the porosity. By comparison, the standard Yolo light clay has
the practically identical value θs = 0.495 (e.g., Smith et al. 2002). A fitted
Darcy flow model, developed below, predicts Dc = 3.65 cm and θc = 0.451 .
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In the region 0 < x < xc , D > 0 and Z − D > 0 , since gravity forces are
weak compared to the pressure gradient of the vacuum system, we assume
that gravitational settling is negligible. Then θ = θ0 for D < z < Z and
θ = θc for 0 < z < D . The thin boundary layer that connects these two
values is ignored. Assuming that the solid volume in a vertical slice remains
constant, the mass partitioning generalises to

[Z−D][1− θ0] +D(1− θc) = Ds (constant). (1)

2.1 Darcy Flow Model

The total hydraulic head (e.g., Smith et al. 2002) is H = h+ z− Z0 where

h =
P − Patm

ρwg
.

The pressure head h is conventionally set to be zero at atmospheric pressure
which occurs at z = Z . The other term z−Z0 is due to the gravity force. At
static equilibrium in one dimension, H = h+ z− Z0 = 0 (constant) so that
the gradient of pressure provides a balance against gravity, ∂P/∂z+ ρwg = 0 .

In the current situation, the liquid is not static but flows downwards. However,
since the porous mat and sediment pile provide most of the hydraulic resistance,
most of the variation of pressure head occurs across the porous material of
total thickness D+Dm where Dm = 2.5mm, the thickness of the mat.

During sedimentation, fines clog the larger pores so that saturated hydraulic
conductivity Ks decreases with time, or equivalently it decreases with dis-
tance x along the belt. Then the vertical Darcy flux

V = −Ks(t)

[
∂h

∂z
+ 1

]
= −Ks(t)

[
c1

D(t) +Dm
+ 1

]
, (2)

where
c1 =

0.3Patm

ρwg
= 3.0 m .



2 The Super-Saturated Slurry M27

At the entry point, the depth of slurry adds an additional 0.15m to the
pressure head. This equates to an additional 5% to the pressure gradient,
a contribution that rapidly diminishes as liquid is removed. The Darcy
velocity V is the volume of water transported through unit cross section of
area in unit time so it has the dimensions of velocity. The actual fluid velocity
is V/θ. The fractional contribution of the gravity term to the square bracket
in (2) is less than 10−3 at the inlet and is 1/70 at x = xc . Therefore it is
neglected in most calculations.

In practice Ks may vary by several orders of magnitude whereas porosity
sits between 0.42 and 0.52 for known soils, except for heavy clays that may
have porosity as large as 0.6, the additional 0.1 usually being occupied by
trapped water. Therefore, in comparison with highly variable Ks, porosity θc
is approximated as a constant.

As the slurry flows downwards, solids at volumetric concentration 1− θ0 are
advected and then deposited at the surface z = D(t). At location x, consider
a vertical thin slice of width δx, height Z, base area δA = Yδx and volume
v = ZδA . There are liquid water and solid mineral components, v = vw+ vs .
Now

vw = θ0(Z−D)δA+ θcDδA ,

vs = (1− θ0)(Z−D)δA+ (1− θc)DδA .

Solids are retained but water departs through the lower boundary at volumetric
flux density V . Hence

VδA = v̇w = θ0(Ż− Ḋ)δA+ θcḊδA , (3)

0 = v̇s = (1− θ0)(Ż− Ḋ)δA+ (1− θc)ḊδA . (4)

Substituting (4) into (2) and (3) there follows the differential equation forD(t),

Ḋ = Ks(t)
c1(θ0 − θc)

(1− θ0)(D+Dm)
,
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subject to D = 0 at t = 0 . The solution is

D(t) =

[
2c1

θ0 − θc
1− θ0

∫ t
0

Ks(t̄)dt̄+D
2
m

]1/2
−Dm . (5)

Thereafter, Z(t) follows from (1).

It was found that the data for the solid mass fraction fs(t) could not be
reconciled with a constant value Ks or for separate constant values of conduc-
tivity for the sediment and the mat in series. However, good agreement was
obtained by assuming the form

Ks =
Km

1+ qt
(q constant).

The solution does not apply beyond the cake formation time t = xc/u0 so for
current purposes it is not necessary to add a limiting platform value to Ks(t).
For that particular model,

D(t) =

[
2c1Km

q

θ0 − θc
1− θ0

log(1+ qt) +D2m

]1/2
−Dm .

Thereafter, Z(t) may be inferred from (1) and subsequently θ(t) and fs(t)
follow from

θ =
Z−Ds
Z

, fs =
Dsρs/ρw

θZ+Dsρs/ρw
. (6)

The solution has two unknown parameters Km and q. These are determined
from the two experimental points in the slurry zone, with x given in metres,
(x, fs) = (3, 0.45) and (x, fs) = (15, 0.62). The results are q = 3.45 s−1 and
Km = 4.71× 10−5m/s = 17.00 cm/h.

It then follows from solving Z−D = 0 that xc = 16.00m and K(tc) = Kc =
1.13× 10−7m/s. The filter mat conductivity Km sits in the range for a silty
sand, whereas the hydraulic conductivity of the formed cake is close to that
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Figure 2: Sediment depth D (blue) and slurry depth Z (orange) versus x—
solution to model, circle symbols from experimental solid mass fraction.
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of Yolo light clay (e.g., White and Broadbridge 1988). These values seem
reasonable from the mixture of particles in the slurry and cake and the fibres
in the mat. The substantial and rapid decrease in Ks over a time of the
order of 0.3 s again indicates that a model with constant Ks cannot agree well
with the data. Ks may be primarily a function K(D) of sediment depth D,
independent of belt speed u0. That rapidly decreasing function is

K(D) = Km exp

[
−ρwgq

2Km∆P

(
1− θ0
θ0 − θc

)
D
(
D+ 2Dm

)]
. (7)

Figures 2 to 4 plot D, Z, θ, and fs against x.
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Figure 3: Volumetric water content θ versus x—solution to model, circle
symbols from experimental solid mass fraction.
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Towards the end of the slurry zone at x = 15m, it is found experimentally
that fs = 0.62 whether or not the Viper is installed. Then from (1) and (5)
at x = 15m, the current model has D = 3.62 cm and Z = 3.72 cm. The
newly formed cake is predicted to have depth Dc = 3.65 cm. Experimentally
it is observed to be 4 cm. The small under-estimate by the model could be
due to the neglect of the horizontal component of flow of solid material in
the x direction, which would occur to some extent due to the slope of the
free surface of the slurry. The solid mass fraction at the form line fs agrees
exactly with the experimental value 0.63.
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Figure 4: Solid mass fraction fs versus x. Solid curve is solution to model,
circle symbols show experimental data.
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At the inlet, the equivalent depth of water is θ0D0 = 13.0 cm. At the form
line x = xc , the equivalent depth of pure water is Dcθc = 1.65 cm. That
means that by the form line, 87% of the initial water volume has already
been removed from the mixture.
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3 The Unsaturated Formed Cake

Beyond the form line, there is no longer water overlying the cake. If more
water is forced out of the cake, it is displaced not by water but by air, initially
through the larger pores where the surface tension forces that hold the water
are weaker. That means that the cake must be unsaturated, with θ < θc .
In that unsaturated state, formally h is negative but in the formulations
of Buckingham and Richardson independently in the early 20thC (Raats
and Knight 2018), h < 0 makes sense as the negative potential energy per
unit weight of water. Water continues to be pushed through progressively
smaller capillaries.

From the experimental data it is found that without the Viper, at the end of
the 30m belt the cake has fs = 0.705 which corresponds to θ = 0.321 . At
the end of the line, 91% of the initial water volume has been removed, no
more than 1% above that which was removed before 18m.

There are three reasons why water extraction is much less effective through
the formed cake. Firstly, after consolidation, the cake has some rigidity and
the water cannot easily be squeezed out by further compaction.

Secondly, the air displaces water from the larger pores. Water is now contained
in an unsaturated porous medium, held in finer pores so that the hydraulic
conductivity is much lower. By comparison, Yolo light clay, which has
saturated water content θs = 0.495 , comparable to that of the coal cake,
has its hydraulic conductivity reduced to 0.1Ks at θ = 0.32 (e.g., White and
Broadbridge 1988). A similar reduction occurs in the unsaturated cake.

Thirdly, the dynamic viscosity ratio µa/µw between air and water is about 0.02,
so we expect the Saffman–Taylor instability to occur with consequent forma-
tion of air fingers that are larger than the largest pores. Some of the energy of
the vacuum extraction system is wasted as work done in preferentially pushing
air at lower resistance, rather than water, through the medium. Another way
of looking at this is that the water between fingers is no longer driven out by
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the air in the fingers. This further lowers efficiency.

The Saffman–Taylor (Saffman and Taylor 1958) instability shows that a one-
dimensional flow solution is not stable but at least in the early wetter stages
of the cake, the system favours a two-dimensional solution with a water-air
interface that is punctuated by air fingers that reduce water flow. Therefore a
solution of quasi one-dimensional flow through the unsaturated cake provides
only an upper bound for the amount of water transported.

Compared to the gradient of pressure head ∂h/∂z in (2), the gravitational
component is negligible. Then neglecting gravity, the equation of continuity
for quasi one-dimensional flow is ∂θ/∂t + ∂V/∂z = 0 which leads to the
nonlinear diffusion equation

∂θ

∂t
=
∂

∂z

[
Dw(θ)

∂θ(z, t)

∂z

]
, (8)

where the water diffusivity

Dw(θ) = K(θ)
dh(θ)

dθ
.

At low water content, water is held in the finest pores that are resistant
to flow. Throughout the unsaturated medium, water diffusivity generally
increases with volumetric water content which varies with z.

After the pond depth reduces to zero, it may be assumed that the water flux
supplied at the surface is zero. Evaporation rates are negligible, rarely as
high as 0.04 cm per hour (1 cm per day) whereas the mean exiting downward
water flux over the last 12m of belt is measured to be at least 3 cm per
hour (0.5mm per minute). At the top boundary we impose a zero-flux
boundary condition. At the bottom boundary, the exiting free water at
pressure 0.7Patm is at equilibrium with pore water at the corresponding value
of capillary pressure head h(θ) = −0.3Patm/ρwg . That gives a boundary
condition θ = θ0 at z = 0 such that h(θ0) = −0.3Patm/ρwg . Therefore the
representative one-dimensional initial boundary value problem is the pde (8)
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subject to initial condition θ(z, 0) = θc with boundary conditions θ(z, 0) = θc
and θ(0, t) = θ0 . The two-parameter representation Dw = a(b− θ)−2 is an
integrable model that is suitable for many purposes. A similar problem has
been solved exactly on a finite one-dimensional domain with prescribed flux
boundary conditions (Broadbridge and Banks 1992). The current problem
with mixed boundary conditions would be more difficult.

With the 50Hz Viper operating, from x = 18m which is soon after re-
consolidation, 1.00 cm depth of water remains inside the cake but along the re-
mainder of the belt, the additional depth of water removed is only 0.07 cm. At
the efflux boundary z = 0 there is no major end effect due to the limited 4 cm
thickness of the cake and the limited 1.0 cm depth of internal water remaining.
Therefore according to the theory of nonlinear diffusion, the change in inter-
nal water depth over this elapsed time is given approximately by a negative
infiltration I = −S(t− t3)

0.5 where t3 = x3/u0 = 135 s and I = −7×10−4m .
That gives an estimate for the desorptivity S ≈ 7 × 10−5ms−1/2. This is
comparable to the sorptivity 1.2 × 10−4ms−1/2 of Yolo light clay over a
similar range of water contents (White and Broadbridge 1988) when the
boundary value and initial value for this problem are interchanged. Not only
the saturated hydraulic conductivity but also the sorptivity (closely related
to the square root of mean diffusivity) are close to those of a light clay.

3.1 Saffman–Taylor Instability

The Saffman–Taylor instability (Saffman and Taylor 1958; Chuoke, van Meurs,
and van der Poel 1959) occurs when a fluid is pumped into a porous medium
and displaces a more viscous fluid that is already present. When the cake first
appears at the form line on the conveyor, the air at the top of the cake begins
to enter and drive the liquid that is inside, down through the cake. Since
water is fifty times more viscous than air, at room temperature, conditions
are perfect for fingering to occur, after the form line. Prior to the form line,
air is not driving water from inside the cake; air pushes down on liquid water



3 The Unsaturated Formed Cake M35

(slurry, really) above the porous medium there, so that within the porous
medium there is only one fluid present (with solid grains in it) and viscous
fingering is not expected to occur.

The consequence of fingering for getting water out of the cake is severe. Air
forms short-cut fingers that eventually reach from the top to the bottom of
the cake, leaving behind most of the water. The higher the pressure gradient,
the worse the instability, and fingers form more rapidly.

There is no requirement for variations in porosity for this to occur. The
instability causing fingers of air to form and penetrate the liquid in the cake
is a result of the kinematic boundary condition at the air/liquid interface and
of the difference in viscosities of air and liquid water. The surface tension
plays a very important role in determining the size of fingers and the speed
with which they propagate to the bottom of the cake.

The Viper might well act to disrupt the air fingers that are predicted by
Saffman and Taylor’s results to be forming in the cake, once liquid is no
longer visible at the top, by breaking the fingers and mixing liquid into any
fingers of air that have formed.

We now compute the timescale for the growth rate, and wavelength, of the
most unstable mode, which requires that we include surface tension. The
timescale gives (with belt speed) a distance over which a finger fully develops.

3.1.1 Instability Calculations

Saffman and Taylor (1958) start with Darcy’s law for fluids flowing in a
porous medium,

V = −
k

µ
∇(p+ ρgz) = ∇φ,

where z is elevation or height, p is fluid pressure, V is the Darcy velocity of
the fluid, k = Kµ/(ρg) is permeability, K is hydraulic conductivity, ρ is fluid
density, φ = −KsH is a velocity potential, and µ is the dynamic viscosity.
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They consider two superposed incompressible fluids forced by gravity and an
imposed vertical pressure gradient across a porous medium, with a steady
state of uniform motion with velocity V , and an interface that is horizontal
in a rectangular coordinate system (x, y, z). Conventionally, V is taken to be
positive when flow is upwards opposing gravity. They perturb the interface
that is initially and instantaneously at z = 0, deforming it into a corrugation of
wavelength ` = 2π/n (where n is wave number) and amplitude a described by

z = aeiny+σt.

Conservation of mass gives the continuity equation

∇ · V = ∇2φ = 0 .

Solutions that vanish at infinity and satisfy at z = 0 the continuity of normal
velocity condition (at leading order in the perturbation)

∂φ1

∂z
=
∂φ2

∂z
= V + aσeiny+σt,

take the form

φ1 = Vz−
(aσ
n

)
einy−nz+σt, φ2 = Vz+

(aσ
n

)
einy+nz+σt,

where the subscript 1 refers to the upper fluid, and subscript 2 refers to the
lower fluid. Then the pressures are

p1 = −
µ1

k1
φ1 − ρ1gz , p2 = −

µ2

k2
φ2 − ρ2gz , (9)

and requiring p1 = p2 at the interface gives to leading order in a the following
relationship between the time growth rate σ and the wavenumber n:

σ

n

(
µ1

k1
+
µ2

k2

)
= (ρ1 − ρ2)g+

(
µ1

k1
−
µ2

k2

)
V . (10)

Instability corresponds to positive (real) σ, when the right-hand side of the
above equation is positive. For our case, with air in region 1 overlying water in
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region 2, V is negative since flow is downwards, the term in front of V is also
negative because air is much less viscous than liquid water (and permeability
to air k1 is bigger than permeability to liquid water k2, further exacerbating
the difference), and the gravity term is negative because liquid water is much
denser than air. So gravity is stabilising (giving negative σ values on its own)
while the viscosity difference is destabilising (inside the cake) when air pushes
downwards on the liquid water. Instability (negative σ) follows whenever

|V | >
(ρ2 − ρ1)g

µ2/k2 − µ1/k1
. (11)

Air permeability k1 is in general different to liquid permeability k2, due to
gas slippage (the Klinkenberg effect) at the molecular level. They may be
close in value, or k1 may be a factor of ten higher than k2 (Mahesar et al.
2017).

Viscosities at room temperature are µ1 ≈ 1.8× 10−2mPa s and µ2 ≈ 1mPa s.
So the air ratio µ1/k1 is several orders of magnitude smaller than µ2/k2,
and the differences and the sums of µ1/k1 and µ2/k2 are well-approximated
by µ2/k2.

Hence using K = kρg/µ the right-hand side of (11) is approximated by

(ρ2 − ρ1)g

µ2/k2 − µ1/k1
≈ ρ2g

µ2/k2
= K ,

so that (11) is approximately
|V | > K . (12)

Using the hydraulic conductivity at the form line estimated after (6) as
K ≈ Kc ≈ 10−7m/s, from (2) we estimate

V ≈ −K

(
c1

D+Dm

)
≈ −10−7

(
3

(40+ 2.5)10−3

)
≈ −10−5m/s .
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Then (12) is satisfied, since |V | ≈ 10−5 is two orders of magnitude greater
than K ≈ 10−7. The Saffman–Taylor instability is expected to occur once the
cake form line appears.

We seek estimates of the most unstable wavelength and its initial growth-rate,
providing estimates of how rapidly fingers of air grow after the form line, and
of the widths of the fingers. Since the previous analysis gives instability for all
wavelengths, we now allow for the effects of surface tension or capillarity at
the air/water interface, which are known (Saffman and Taylor 1958; Chuoke,
van Meurs, and van der Poel 1959) to provide a wavelength associated with
the most rapid growth rate.

We follow Chuoke, van Meurs, and van der Poel (1959) who deal with
capillarity a little differently to Saffman and Taylor (1958). Capillary pressure
can be written

Pc = γ

(
1√
3k

+
d2z

dy2

)
= γ

(
1√
3k

− an2z

)
, (13)

where the surface tension is γ ≈ 0.064N/m. The first term on the right-hand
side of (13) is the usual one associated with fluid/fluid interfaces at the pore
level underlying the macroscopic interface at z, and the second term is due
to the curvature of the interface. Then the pressure match at the interface
between fluid 1 and fluid 2 becomes p1 = p2 + Pc , and noting that there are
in general also be constants of integration P1 and P2 in the expressions (9)
for p1 and p2, it follows that at zero order in a

P1 = P2 +
γ√
3k
.

Equating the coefficients of a gives the following modification to (10):

σ

n

(
µ1

k1
+
µ2

k2

)
= (ρ1 − ρ2)g+

(
µ1

k1
−
µ2

k2

)
V − γn2.

The nice thing about introducing surface tension γ is that we now have a
local maximum for the growth rate σ as a function of wave number n, giving
a most unstable wave and its growth rate.
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We approximate this here by taking advantage of the relatively small size of
our µ1/k1 and of the gravity term, to obtain

σ

n

µ2

k2
≈ −

µ2

k2
V − γn2 =

µ2

k2
|V |− γn2. (14)

The critical wavelength (all wavelengths above this are unstable) is where the
right-hand side of (14) is zero, that is, `c = 2π

√
k2γ/(µ2|V |) . Setting the

derivative of σ with respect to n to zero using (14) gives the most unstable
wavelength as

`m =
√
3`c .

For our parameter values, this is about 1mm. The value used here for the
interfacial surface tension is not really correct in general for a porous medium,
as it should be an effective surface tension (Chuoke, van Meurs, and van der
Poel 1959). It is only correct for the analogous Hele–Shaw cell model. The
effective surface tension is some unknown multiple of γ, so that the actual
most unstable wavelengths may be several times larger than 1mm.

The wavelength value 1mm gives the growth rate value σm ≈ 4 s−1, so
that fingering develops on a relatively rapid timescale of about 1/4 second
once the cake makes its appearance. For example, if grain sizes ranging
from 50–300 microns are assumed to set the initial perturbation size a at
these values, then the perturbation size is ae4t which reaches the full thickness
of cake ≈ 40mm after only a second or two. In this time, the conveyor belt has
travelled between 140 and 300mm, which is of the order of a roller diameter.

Air fingers could break through in a 40mm cake just 140–300mm downstream
from the form line. This suggests that the first Viper should be placed
in that locality.



4 Viper Location and Function M40

4 Viper Location and Function

There is scant established scientific knowledge on the behaviour of multiphase
fluids in deformable porous media under vibration. Therefore the influence of
fingering and liquefaction must be somewhat speculative, to be resolved only
by further experimentation. Under the first Viper, we assume fingers of air are
disrupted, and we could consider that there is a random mixture of air bubbles
and water throughout the cake upon disruption. An approximate result from
Saffman–Taylor theory suggests there may be 50% air in the cake by volume
upon breakthrough of air fingers. Water and air bubbles do not mix well; it
would be a rough approximation to model the mixture after breakup by the
Viper, as an equivalent fluid with an effective viscosity that is between air and
liquid water values, perhaps halfway between. Then the next occurrence of
the viscous instability would not develop as rapidly as before the first Viper,
since the viscosity difference is now halved. The maximum time constant σ is
approximately proportional to the square root of effective liquid viscosity, so
the distance from the Viper to the next breakthrough of the roughed-up cake
could be expected to be about a factor of

√
2 ≈ 1.4 times the first distance,

that is, about an extra half again of 140–300mm. This suggests placing a
second Viper at a distance of 200–450mm from the first Viper.

A third Viper might be placed a further factor of
√
2 away from the second

Viper, that is, 300–700mm away. These estimates of best placement of
Vipers being further and further apart assume a similar process of halving the
effective viscosity difference between air and mixture each time penetrating
fingers are mixed up by a Viper.

With a single Viper operating at 50Hz, the final solid mass fraction fs
increases from 0.705 to 0.75. This is equivalent to the final water content θ
decreasing from 0.321 to 0.256. Then 93% of initial water volume is removed,
compared to 91% without the Viper. This change has significant economic
consequences as well as improvement in safe stable transport. Every part of
the cake surface interacts with the roller of diameter 30 cm, at some time.
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The roller has a contact length of around 5 cm with the surface of the pliable
cake. The contact time is around 0.36 s. At oscillation frequency ν = 50Hz,
around 18 cycles of vibration take place in that time.

Jord International provided mass fractions obtained from samples at mea-
surement stations at various locations along the belt. The data set is not
for publication but some particular measurements are used to inform the
modelling team. In the slurry at Station 2 location x = 15m, at a short
distance upstream from the form line and the roller, samples have solid mass
fraction fs = 0.62 whether or not the viper is operating. However, at Station 3
location x = 18m, just beyond the usual location of the Viper, its operation
improves the solid mass fraction from 68.7% to 73.8%. In the 8.5m from
Station 4 to Station 5, very little additional water is removed. With the
Viper operating, over the final 8.5m an additional equivalent depth 0.3mm of
water is removed. Without the Viper, a slightly larger amount, an equivalent
depth of 0.8mm, is removed over that distance. This is because the water
content is still higher and the hydraulic conductivity is higher than if the
Viper had operated to remove water earlier. The Viper operation still achieves
more water extraction over the whole belt passage, mainly near the form line.
Clearly the Viper is having a local effect on the passing cake but no local
effect on the preceding slurry.

4.1 Squeezing the Sponge

As it reaches Station 3 after passing the Viper, the cake has equivalent water
depth reduced 2.5mm further than when the Viper is not present. This
compares with the amplitude of oscillation of the roller axis, a = 2mm. If the
roller at its highest elevation is still touching the cake, then it is 4mm deeper
after one half cycle. All solids are retained in the cake so this 2mm reduction
can be compensated only by shrinkage of the cake or by displacement of water
by air. While the cake is being rolled, air cannot be entering through the roller.
Imagine a saturated sponge being drawn under a roller where it is compressed.
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Some water exits at the lower boundary if it is perforated. Some water exits
on the upper boundary on the upstream side. In the case of the conveyor
belt, the additional water (less than 2mm in depth) mixes with the slurry
from where it is more easily extracted by the vacuum system. However, this
cannot be the whole story since, as yet, there is no explanation of the observed
frequency dependence. The data show clearly that water extraction is more
efficient at 50Hz Viper frequency than at 15Hz. At Station 3, fs reduces
from 0.738 to 0.707 when frequency is reduced from 50Hz to 15Hz. The
equivalent depth of pore water increases from 1.0 cm to 1.16 cm.

4.2 Conditions for liquefaction

Liquefaction can cause saturated soils to flow, for example in earthquakes. The
principal mechanism is thought to be the “pressurisation” of the fluid in the
pores, which when sufficiently large can overcome the inter-grain forces. The
exact mechanism by which the pressurisation occurs is not fully understood
and may be different in different applications (e.g., Sawicki and Mierczyński
2006; Goren et al. 2011; Lakeland, Rechenmacher, and Ghanem 2014). In
the traditional approach for earthquake modelling it is assumed that there
is no drainage from the soil (upwards or downwards) on the timescale of
liquefaction, but this has been disputed more recently.

During the operation of the Viper, liquid is seen pooling on the top surface
downstream, even when the Viper is positioned where the cake is fully formed.
This suggests that the roller/Viper assembly leads to a pressure increase, with
the fluid being forced upwards, meaning that drainage is taking place.

To determine whether liquefaction could be at play we need a quantitative
analysis. We first follow the calculations of Lakeland, Rechenmacher, and
Ghanem (2014). They derive a 1D fluid equation in the vertical direction, cou-
pling Darcy’s law with conservation of mass and energy, formulated for a thin
vertical slice. Following appropriate expansions and non-dimensionalisations
they arrive at the following equation for the variation of the non-dimensional
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pressure perturbation P′ with time, t:

∂P′

∂t
= −β(φ̂)

∂φ′

∂t
+
1

φ̂

[
k′d
∂2P′

∂z′2
+
∂k′d
∂z′

(
∂P′

∂z

)]
+

(∂S′/∂t′)γS

C′
v(φ̂)

where

φ = φ0

(
1+

∆φ

φ0
φ′
)
, φ̂ =

φ

φ0
, t = ∆t t′, z = ∆z z′,

P = P0 + P0P
′, S = ∆S S′, kd = kd0k

′
d

and kd, φ, S, Cv represent the permeability, porosity, entropy and specific
heat capacity (averaged for grains and water), respectively. The scales ∆z,
∆t, ∆S, and ∆φ are chosen to ensure that maximum variations of physical
quantities, together with the dimensionless gravitational static pressure, are
normalised to be O(1):

∆z = Dc , ∆t =
φ0µP

2
0

g2kd0KBρ
2
0

,

∆S =
Cv0P0γS

αKBT0
, ∆φ = φ0(1− φ0)

P0

KB
,

with µ, ρ, g, KB, T, α being the dynamic viscosity, density, gravitational ac-
celeration, bulk modulus of water, temperature and coefficient of volumetric
thermal expansion, respectively. In this case, peak inertial stresses are of the
order ρwω2a∆z = 8×103Nm−2 = 0.08P0 so P ′ = 0.08 . For the Viper system
the appropriate length scale is 0.04m which is the full depth of the cake. In
a deeper medium, the length scale for capillary rise would be P0/ρ0g ≈ 0.4m
but this is outside the domain of the cake.

It is argued that fluidisation takes place if the timescale of the applied
force (the loading) is shorter than the characteristic timescale on which the
pressure grows, ∆t (since pressure equalises with the boundary values on the
timescale ∆t). Combining the above equations leads to

∆t =
(∆z)2φ0µ

kd0KB
.
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We assume typical values for water and silts of φ0 = 0.5 (comparable to
θc = 0.45), µ = 1.8 × 10−3 kgm−1s−1, and KB = 2 × 109Nm−2. From
Section 2, kd0 = Kcµ/ρwg = 1.8× 10−14m2. This leads to

∆t = 0.04 s.

With the Viper operating at 50Hz, the loading time is ∆tload ≈ 0.02 s = 0.5∆t .
This supports the idea that the Viper causes a liquefaction of the cake. This
model does not include the vacuum suction.

As a side-note, we argue that small scale lab systems (on the scale of the
vacuum belt under consideration) behave differently to geotechnical scales
relevant for earthquakes. In fluidisation, flow/drainage should be unimportant
in releasing stress if

∆P

∆tload
� P0

∆t
.

In this case, the inequality is satisfied by a factor of 6.

4.3 Deborah number—solid versus liquid behaviour

As an alternative approach, we consider the Deborah number De, which
quantifies the extent to which a material under an applied stress behaves like
a solid or a liquid. Generally speaking, for De� 1 the material behaves like
a fluid, while for De� 1 the material behaves more like a solid:. De→∞
for a Hookean elastic solid; whereas De = 0 for a Newtonian viscous fluid.
The Deborah number is defined by

De :=
td

t0
, (15)

where t0 is the timescale of the deformation and td is the characteristic
timescale for relaxation of the stress.

Following Goren et al. (2011), we take the relaxation time as the timescale
for equalisation of the pore pressure (“pore pressure diffusion”). If the pore
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pressure is able to equalise with the boundaries (atmospheric value) between
driving cycles, then the Viper cannot repeatedly build the pressure to reach
the liquefaction threshold. Goren et al. (2011) take for the pore pressure
diffusion timescale

td =
ld

Dw
, where Dw =

k

βµφ
,

where d is the grain diameter, k is the permeability, φ is the porosity, µ is
the dynamic viscosity of the fluid, β is the adiabatic fluid compressibility,
and the length scale l = min(ζ,Dw/c0), with ζ the maximum distance to the
boundary and c0 a characteristic velocity for the perturbation. Goren et al.
(2011) consider the effect of thin boundary layers of higher permeability, which
are ignored for well-drained systems—we assume here a uniform permeability
since the water is free to drain out of the top surface of the cake.

With speed of sound cs, we take

φ = 0.5 , µ = 1.8× 10−3 kgm−1s−1,

k = 1.8× 10−14m2, β =
1

ρc2s
≈ 10−9 Pa−1,

d = 100µm = 10−4m .

Over the compressive part of the Viper oscillation, the mean velocity is
− 2
π
ωa = −4aν = −0.4ms−1. We find ` = ζ = 0.04m, which is less than

the diffusive length. Substituting all of these values into (15) we obtain
De = 5× 10−3. This suggests that the Viper action causes the cake to ‘flow’,
disrupting the established ‘fingers’ of air flow. The higher the frequency of the
Viper, the shorter the timescale and the smaller the Deborah number. Even
for the lowest mentioned operating frequency of 15Hz the Deborah number
is still well below one.
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4.4 Macroscopic Darcy Picture During Liquefaction

Could partial liquefaction over such a short time have such an effect on
water extraction? At the form line, the cake is saturated with negligible
overlying water. During subsequent liquefaction the total volume cannot
increase. Therefore the redistributed solid particles remain close together and
the subsequent re-compaction time could be quite short. Assume that the
cake takes at least as long to consolidate as it does to liquefy. Consider a
time span of liquefaction to be ∆t = 0.4 s. The equivalent depth ` of water
removed by the Viper at 50Hz is 3.2mm. Assume that during liquefaction
there remains a sediment of depth D < Dc . Given the effective hydraulic
conductivity Ks = K(D), Darcy’s law (2) then determines the approximate
thickness D of the unbroken sediment pile beneath the liquefied layer:

−K(D)
c1

D
=
`

∆t
.

Numerically solving this for D, we obtain D = 1.0 cm. Above that layer of
intact sediment there is a liquefied mixture layer around 2.6 cm thick. That
depth of partial liquefaction would be proportional to the number of cycles of
vibration. If the frequency is reduced from 50Hz to 15Hz, then the sediment
pile should be reduced by 8mm rather than 26mm. The relation (7) for
conductivity of compacted sediment would then predict a very low amount of
additional water removed. However, the assumption of a constant conductivity
during a nonlinear diffusion process leads to errors. The observations indicate
an extra outflow of 1.6mm at 15Hz. The question arises whether during
shaking, the remaining sediment bed has some dynamical response that
reduces hydraulic conductivity. Contrary evidence is that the Viper gives
no discernible improvement to water extraction in the nearby slurry zone
with underlying sediment. The liquefaction theory, combined with Darcy
flow, does at least incorporate some frequency dependence. The criteria for
liquefaction include the number of cycles and the peak stress, both of which
increase with frequency.
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5 Representation of Solid Fraction on Whole
Belt

The content of water as it travels along the vacuum belt were considered in
three parts, each of which are subjected to different physical mechanisms:

• the region with overlying slurry upstream of the form line;

• the saturated cake under the roller and Viper;

• the unsaturated cake further downstream.

Since each of these regions requires a different dynamical model, it is conve-
nient to construct a simple smooth function that describes the x-dependent
solid mass fraction along the whole belt. From a high input value of
1− fs ∈ [0.75, 0.87], the gravimetric water content rapidly diminishes. That
rapid decrease is approximated by an exponential function. A simple com-
posite model approximates the trend of the data before the form line, while
there is an observed flatness once the cake has formed. Upstream the solids
fraction is dominated by the component

fs(upstream) = C−Ae−Bx, (16)

Near the Viper location x = xV , the upstream component connects to a flat
downstream component by the addition of the simple sigmoid component
function

fs(Viper) =
E

1+ exp ([xV − x]F)
. (17)

By adding the two components the solids fraction along the whole belt is
approximated as

fs = C−Ae−Bx +
E

1+ exp ([xV − x]F)
.

An example of optimised values to fit this equation in the case of a coal slurry
on a vacuum belt moving at 8ms−1 and the Viper module operating at 50Hz
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Figure 5: Fitting
solid mass ratio
versus x over the
entire belt length
using exponential
functions.
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are

A = 0.4443 , B = 0.3111 , C = 0.6244 ,

E = 0.1204 , F = 15 , xViper = 16.50 .

These values are for respective constants in (16) and (17). These variables
correspond to the fit of the data shown in Figure 5.

The model can accurately represent current data in a variety of situations
such as varied frequency and belt speed. However, compared to the Darcy
flow model (4), the values of fs between Stations 1 and 2 are higher, and
flatter as Station 2 is approached.
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6 Improving Efficiency by Belt Speed and
Multiple Vipers

The data show that adding a second Viper does improve water extraction
but only by a relatively small amount. At a short distance past the first
Viper, in the region of re-consolidation, the matrix structure is more rigid,
allowing little more compression. There is then no more liquid lying above the
cake. Further exit of water from the cake can happen only by air displacing
the liquid from the larger pores. The medium is then unsaturated, with
the remaining water held in progressively smaller pores whose conductivity
is lower, in proportion to pore radius squared. The conductivity decreases
further along the belt and exiting water flux decreases. This is exacerbated
by energy being wasted as work is done against friction as air is driven by the
pressure gradient through larger pores. The data show that little more water
is extracted more than a few metres beyond the first Viper. A second Viper
achieves little more because it must be placed over a compacted drier cake
with higher hydraulic resistance. If it is to be used, then both Vipers should
be placed close together in the early part of the formed cake. However, the
theory of liquefaction followed by consolidation would have the second Viper
working on a more cohesive cake that would be held together more strongly
by surface tension even when it is saturated. Shaking would then remove
fewer solid grains and a second liquefaction would be more superficial.

Increasing belt speed does increase throughput. However, the data show that
not so much water is removed when the speed u0 is increased from 14 cm s−1
to 20 cm s−1. With one Viper operating, the final solid mass fraction decreases
from 75% to 72% and with two Vipers, the decrease is from 75.6% to 72.6%.
The decrease in performance is partly due to the water flow through the cake
taking place over a shorter time. However, when a Viper is operating, we
have already seen that relatively little water is extracted over the last 8m
of the belt. This suggests that the reduction is due to a shorter interaction
time as the cake passes under the roller. As fs reduces from 0.75 to 0.72,
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the depth of water removed from the saturated cake decreases from 6.8mm
to 5.6mm. As the speed is increased from 14 cm s−1 to 20 cm s−1, interaction
time with the roller decreases by 30% and the remaining depth of water in
the cake increases by 1.2mm which is 48% of the water removed by the Viper
at 50Hz up to Station 3 when the belt speed is at the lower value.

7 Conclusion

De-watering through a vacuum filter belt involves three distinct stages. In
the first stage, a liquid slurry lies above a growing sediment layer. We have
shown that the observed rate of extraction is in accord with Darcy’s law after
assuming reasonable values for the hydraulic conductivity of the sediment and
filter mat. However, we can obtain exact agreement with the data only when
the hydraulic conductivity decreases with time. This reflects the entry of
fine particles into large pores. We have not yet accounted for the consequent
decrease in porosity (and consequent decrease in saturated water content)
that happens over a short time before fine particles fill the largest pores.
Generally speaking there is not a large variation in porosity across soil types.

It has been found that the vibrating Viper is most effective in the narrow
region of the second stage, just after the form line of the solid filter cake. Our
calculations indicate that, due to its lower viscosity, air will form low-viscosity
fingers that will fully penetrate from the surface to the bottom of the cake in
a short time, thereby short-circuiting the effectiveness of the pressure gradient
to drive water flow.

One role of the Viper is to break up the fingers, restoring useful water flow for
a short time. Although our calculations, accounting for viscosity of the fluid
mixture, suggest that a second Viper should optimally be placed at 1.4 times
the distance from the form line compared to the first Viper. By that distance
we anticipate that the filter cake will be drier and more rigid, and we expect
that it will be more difficult for a second Viper to break up the air fingers.
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A second role of the vibration is to effect temporary liquefaction of the mixture,
thereby again improving downward water flow. This is not independent of
finger break-up which involves the mixing of solids and fluids. Although there
is no universally accepted theory of observed liquefaction of vibrating soils, a
currently published theory does account for near-complete liquefaction at the
water content and maximum Viper vibration frequency.

Downstream reformation of fingers would further decrease water flow, even
beyond the decrease predicted in Darcian one-dimensional unsaturated flow.

The third stage is far downstream where the formed filter cake is unsaturated
and it contains a large amount of air. It is found experimentally that little
additional water is extracted during that stage. This also is in accord with
standard Darcian soil-water theory wherein hydraulic conductivity rapidly de-
creases as water content decreases. A full solution for the nonlinear boundary
value problem of one-dimensional unsaturated flow through the formed cake,
is achievable with current mathematical technology but that would require a
lot of work. The one-dimensional model neglects viscous fingering. Therefore
despite already predicting a minor level of water extraction through the
formed cake, it would be an over-estimate. That amount of water extraction
is barely significant for this industrial process.

Some errors in our modelling result from assuming quasi-one-dimensional
flow which neglects horizontal flow of water. The solution of the full two-
dimensional flow problem would be moderately challenging, especially since
two free surfaces are involved. In the future that could be tackled by compu-
tational fluid dynamics software.

We identified some mechanisms that have not yet been verified by more
detailed experiment. The problem could be better understood when the
theory of liquefaction is more developed. Given the small length and time
scales involved it should be possible to set up a small lab scale experiments,
perhaps using a centrifuge to produce the required driving force.
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