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Computing expected moments of the Rényi
parking problem on the circle
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Abstract

A highly accurate and efficient method to compute the expected
values of the count, sum, and squared norm of the sum of the centre
vectors of a random maximal sized collection of non-overlapping unit
diameter disks touching a fixed unit-diameter disk is presented. This
extends earlier work on Rényi’s parking problem [Magyar Tud. Akad.
Mat. Kutató Int. Közl. 3 (1–2), 1958, pp. 109–127]. Underlying the
method is a splitting of the the problem conditional on the value of
the first disk. This splitting is proven and then used to derive integral
equations for the expectations. These equations take a lower block
triangular form. They are solved using substitution and approximation
of the integrals to very high accuracy using a polynomial approximation
within the blocks.
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1 Introduction
Consider the two-dimensional process of unit-diameter disks attaching ran-
domly onto the circumference of a fixed central unit-diameter disk, as shown
in Figure 1(a). The accretion is assumed to occur sequentially in such a
way that the location of each additional disk is randomly and uniformly
distributed over the available accessible part of the central disk. The process
stops when no further attachment points are available. Herein we analyse the
distributional properties of the vector sum of the location of the centres of
the attached disks.

The problem is related to a well-known one-dimensional packing problem
known as Rényi’s car parking problem [2]. Rényi [8] [English translation: 3,
pp. 203–218] analysed a stochastic process arising when sequentially packing
unit intervals [Yi, Yi+1) representing parked cars into an interval [a, b] (where
a, b ∈ R and Yi ∈ [a, b− 1] is a random number), such that the unit intervals
do not overlap. The location of each additional car is randomly and uniformly
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Figure 1: (a) The accretion of disks to a central disk; and (b) the equivalent
Rényi parking problem in which the centre of each disk is mapped to the left
hand end of a unit-length car. The vector-valued function v is defined by
equation (3). Without loss of generality, the first attached disk is assumed
to be centred at v(0) = (1, 0)T . Equivalently, the first car is assumed
to be located at position 0, and hence the Rényi process pertains to the
interval [1, 6] .

distributed over the available subset of [a, b], and the packing is completed
when all the remaining gaps are less than one. Rényi [8] showed that the
expected value of the number of parked cars satisfies an integral equation
resulting from a splitting property of the number of cars in sub-intervals
on either side of the first parked car. He further established an exact value
(approximately equal to 0.75) for the limit of the expected packing density as
the parking interval b− a → ∞ . After the first external disk has attached,
our approach involves of mapping the available part of the circumference of
the central disk onto the interval [1, 6], as shown in Figure 1(b) for the interval
case which is appropriately mapped to the circular case in Figure 1(a), and
developing analogues of Rényi’s integral equation for features relevant to the
disk accretion problem.
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The expected maximal number of parked cars is computed explicitly for
small x = b − a . However, the formulas get very complicated even for
moderate x , take a long time to compute and often evaluate poorly due to
rounding errors. Thus numerical approaches were established for computing
the expectation [4, 5]. These numerical approaches give highly accurate
results. The approach taken here is similar in that it also uses a highly
accurate piecewise polynomial approximation. In addition to computing the
expected number of added disks, we compute the mean squared shift of the
vector sum of centres of the attached disks. This requires the solution to
high numerical accuracy of a system of integral equations. We review the
underlying splitting property in Section 2 for various features relevant to the
disk accretion problem and derive a system of integral equations for their
expected values in Section 3. The method is then implemented using the
new framework developed by Olver and Townsend [7]. The algorithm is
summarised in Section 4 and final results are presented in Section 5.

2 Mathematical modelling

2.1 Rényi Point Process for [a, b]

Let K(a, b) be the (random) number of unit-length cars parked in an inter-
val [a, b] when packing is completed. Rényi’s stochastic process defines a
random set

α(a, b) = {Y1, . . . , YK(a,b)} ⊂ [a, b− 1] ,

which is a translational invariant point process, as shown in the following
lemma where the random variables Yi are formally introduced.

Lemma 1 (Translational Invariance).

α(a+ t, b+ t) = t+ α(a, b) , for all t ∈ R .

Proof idea: The stochastic process for the interval [a+ t, b+ t] generates a
sequence of random variables Y1 + t, . . . , YK + t where the Yi are the random
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variables generated by the process for the interval [a, b] . ♠
It follows that K(a, a+ x) = K(0, x) for all real x ⩾ 0 .

A consequence of the one-dimensionality of the Rényi point process is a
splitting property of the random set conditional on the first point Y1. This
conditional set is denoted by α(a, b | Y1 = y) . The splitting property gives
rise to the integral equations derived in the next section.

Lemma 2 (Splitting Property).

α(a, b | Y1 = y) = {y} ∪ α(a, y) ∪ α(y+ 1, b) .

Proof: When the random variables Y2, Y3, . . . are generated, each element
is either in [a, y − 1] or in [y + 1, b − 1] . Now Yi, Yj are independent if
Yi ∈ [y+ 1, b− 1] and Yj ∈ [a, y− 1] as they cannot overlap. Consequently,
the points in the two subsets generated for the conditional process produce
two independent random sets α(a, y) and α(y+ 1, b) . ♠

The Rényi point process gives rise to a random counting measure with pa-
rameters a and b defined by

N(a, b) =
∑

y∈α(a,b)

δy ,

where δy is the atomic measure for which

δy(M) =

{
1 , if y ∈ M,

0 , otherwise,

for any set M ⊂ R . It follows that the support of this measure is α(a, b) .
This measure is defined for any set M ⊂ R by

N(a, b)(M) = |α(a, b) ∩M| . (1)
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In particular, one has K(a, b) = N(a, b)([a, b]) . Note that K is translational
invariant, that is K(a+ t, b+ t) = K(a, b) .

The conditional counting measure N(a, b | Y1 = y) satisfies a splitting
property

N(a, b | Y1 = y) = δy +N(a, y) +N(y+ 1, b) . (2)

This is a consequence of Lemma 2.

2.2 Randomly packing disks touching a central disk

We map the interval [0, 6) bijectively onto the unit circle S2 by

v(y) = Q(y)

[
1

0

]
, y ∈ [0, 6) . (3)

where
Q(y) =

[
cos(πy/3) − sin(πy/3)
sin(πy/3) cos(πy/3)

]
, (4)

as shown in Figure 1. Packing subintervals of [1, 6) then corresponds to
packing unit diameter disks touching a central unit diameter disk, conditional
on an initial disk being attached with its centre at v(0) = (1, 0)T . The centres
of the touching disks are on the unit-radius circle S2. One can thus apply
Rényi’s point processes to the addition of disks subsequent to the first added
disk.

We now introduce real and vector valued features of the point process which
are polynomial functions of the random variables v(Y1), . . . , v(YK) invariant
under permutations of the Yi. In particular we consider features invariant
under any translation of the parameters a and b. Clearly, K(a, b) is an
example as K(a + t, b + t) = K(a, b) and K(a, b) is a constant function of
the Yi. We introduce a 2-component vector-valued polynomial

F(a, b) =

K(a,b)∑
i=1

v(Yi) . (5)



2 Mathematical modelling C122

The value [(1, 0)T + F(1, 6)]/[1+ K(1, 6)] is the centre of mass of the circular
polygon with vertices v(Yi). The splitting property of F(a, b) follows from
the definition and is

F(a, b | Y1 = y) = F(a, y) + F(y+ 1, b) + v(y) . (6)

But F is not invariant under translations since

F(a+ t, b+ t) = Q(t)F(a, b) . (7)

We introduce the feature

L2(a, b) = ∥F(a, b)∥2 , (8)

which is used in Section 5 to determine the expected shift in the centre of the
polygon with vertices v(Yi). We introduce another second degree feature

E2(a, b) =
∑
Yi<Yj

v(Yi)
Tv(Yj) =

∑
Yi<Yj

cos(π(Yi − Yj)/3) , (9)

which is better suited to the computations performed in Section 3. Proposi-
tion 4 shows how this feature relates to L2(a, b). This feature is also invariant
under translations of the Yi as it only depends on the differences Yi − Yj and
the translated difference is (Yi + t) − (Yj + t) = Yi − Yj . This feature admits
the following splitting property.

Proposition 3.

E2(a, b | Y1 = y) = E2(a, y) + E2(y+ 1, b) + F(a, y)TF(y+ 1, b)

+ v(y)T [F(a, y) + F(y+ 1, b)] .
(10)

Proof: The sum in equation (9) decomposes into three sums over i, j ̸= 1 ,
one sum over i where j = 1 and one sum over j where i = 1 as follows∑

Yi<Yj

=
∑

Yi<Yj<y

+
∑

y<Yi<Yj

+
∑

Yi<y<Yj

+
∑

Y1=y<Yj

+
∑

Yi<y=Y1

.
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The summand in each term is cos(π(Yi − Yj)/3) . ♠
We use the splitting property to derive integral equations in the next section
for the expectation of F(a, b) and of E2(a, b) .

We now have three features K, L2 and E2 connected by the following Lemma.

Proposition 4.
L2(a, b) = K(a, b) + 2E2(a, b) .

Proof: One has

L2(a, b) =

K(a,b)∑
i=1

K(a,b)∑
j=1

v(Yi)
Tv(Yj)

=

K(a,b)∑
i=1

∥v(Yi)∥2 + 2
∑
Yi<Yj

v(Yi)
Tv(Yj) .

The result follows as v(y) lies on the unit circle. ♠

3 Integral equations

3.1 Equation for EK(0, x)
The random variables K(a, b) denoting the counts of parked vehicles (or
disks) in Rényi’s model on an interval [a, b] are translational invariant, that
is K(a, b) = K(a+ t, b+ t) for any t ∈ R . An application of these properties
provides the following proposition.

Proposition 5. Let u1(x) = EK(0, x) be the expected number of vehicles in
the interval [0, x] . Then

u1(x) =
2

x− 1

∫ x−1

0

u1(y)dy+ 1 . (11)
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Proof: Let Y1 be the (random) position of the first vehicle. For any a ⩽
y < b , equation (2) implies that the counting variable K(a, b) conditional on
Y1 = y satisfies a splitting property

K(a, b | Y1 = y) = K(a, y) + K(y+ 1, b) + 1 .

As Y1 is uniformly distributed over [a, b− 1] one has

EK(a, b) =
1

b− 1− a

∫b−1

a

EK(a, b | Y1 = y)dy .

As the counting variable is translational invariant, that is K(a, b) = K(0, b−a)
one solves the proposition by substituting the conditional count on the right-
hand side using the splitting property and substituting a = 0 and b = x .

♠

The expected count for a general interval is

EK(a, b) = u1(b− a) .

3.2 Equation for EF(0, x)
Proposition 6. Let the (vector valued) function u2(x) = EF(0, x) where
F(0, x) is defined in equation (5). Then

u2(x) =
1

x− 1

∫ x−1

0

[u2(y) +Q(x− y)u2(y) + v(y)]dy , (12)

where Q is defined in equation (4).

Proof: The splitting condition (6) is

F(0, x | Y1 = y) = F(0, y) + F(y+ 1, x) + v(y) .
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Using the translation formula equation (7) for F and taking the expectation
gives

u2(x | Y1 = y) = u2(y) +Q(y+ 1)u2(x− 1− y) + v(y) .

Integrating over y and reversing the order of the integration for the second
term gives the result. ♠

3.3 Equation for EE2(0, x)

Proposition 7. Let u3(x) = EE2(0, x) . Then

u3(x) =
2

x− 1

∫ x−1

0

u3(y)dy+ g3(x) , (13)

where

g3(x) =
1

x− 1

∫ x−1

0

[
u2(y)

TQ(y+ 1)u2(x− 1− y) + v(y)Tu2(y)

+ v(−1)Tu2(y)
]
dy .

Proof: The splitting of E2 in equation (10) gives

E2(0, x | Y1 = y) = E2(0, y) + E2(y+ 1, x) + F(0, y)TF(y+ 1, x)

+ v(y)T [F(0, y) + F(y+ 1, x)] .

Using the independence of F(0, y) and F(y+ 1, x) one gets

u3(x | Y1 = y) = u3(y) + u3(x− 1− y) + u2(y)
TQ(y+ 1)u2(x− 1− y)

+ v(y)T [u2(y) +Q(y+ 1)u2(x− 1− y)] .

Noting that v(y)TQ(y + 1) = v(−1)T and integrating over y with a change
of integration variable in the last term gives the result. ♠
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4 Numerical solution
Equations (11), (12) and (13), for the expectations u1(x) = EK(0, x) , u2(x) =
EF(0, x) and u3(x) = EE2(0, x) are all integral equations of the form

u = Lu+ g , (14)

for some linear integral operator L and function g specified in the following
sub-sections. In the Rényi process, a space of length less than 1 must be
unoccupied, so u(x) = 0 for x ∈ [0, 1) . Furthermore,

Lu(x) =
1

x− 1

∫ x−1

0

M(x, y)u(y)dy , for x > 1 ,

where M(x, y) = I+Q(x− y) for the vector case u2(x), and M(x, y) = 2 for
the scalar cases u1(x) and u3(x). We are interested in computing u(x) for
x ∈ [0, 5] . The solution of equation (14) follows trivially for x ∈ [0, 2) :

u(x) =

{
0 , x ∈ [0, 1) ,

g(x) , x ∈ [1, 2) .

Now if one interprets the function u(x) as a block vector where each block
corresponds to a function on an interval [k − 1, k], then the integral equa-
tion (14) is of block lower triangular structure and can be solved by repeated
substitution. Specifically, one computes u(x) for x ∈ [k, k+ 1] by

u(x) =
1

x− 1

∫ x−1

0

M(x, y)u(y) + g(x) , x ∈ [k, k+ 1) ,

which uses u(x) for x ∈ [k − 1, k] . It then follows directly that u is C∞ on
each interval [j− 1, j] for j = 1, 2, . . . and is continuous on [1,∞).

The approach was implemented in the Julia language [1] using the ApproxFun
package [7, 6]. The code is available on request from the first author. Plots of
the functions u1, u2 and u3 are shown in Figure 2. Computed values agree to
machine accuracy with analytic calculations of u1(x) for 0 ⩽ x ⩽ 4 [9], and
our own analytic calculations of u1(5) and u2(x) and u3(x) for 0 ⩽ x ⩽ 3 .
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Figure 2: Numerical solutions of u1(x), both components of u2(x), and u3(x).

5 Results
It remains to compute the expected values of features pertaining to the full
set of attached disks. The expected total number of disks is

E[1+ K(1, 6)] = 1+ u1(5) = 4.48508592498075 .

The expected vector sum of centres of the attached discs conditional on the
first disk being located at (1, 0)T is

E
[(

1

0

)
+ F(1, 6)

]
=

(
1

0

)
+Q(1)E[F(0, 5)]

=

(
1

0

)
+

(
cos(π/3) − sin(π/3)
sin(π/3) cos(π/3)

)
u2(5)

=

(
0.00226785060421

0

)
.
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By symmetry, the second component must be zero, and this is confirmed to
machine accuracy. Finally, define the mean square shift of the sum of centres
of the attached disks as

I :=

∥∥∥∥(10
)
+ F(1, 6)

∥∥∥∥2

= 1+ 2(1, 0)Q(1)F(0, 5) + ∥F(0, 5)∥2

= 1+ 2 (cos(π/3),− sin(π/3)) F(0, 5) + L2(0, 5) .

Its expected value is, using Proposition 4,

E[I] = 1+ 2 (cos(π/3),− sin(π/3))u2(5) + u1(5) + 2u3(5)

= 0.2325047203936 .
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Sankhyā: Indian J. Stat., A (1961–2002) 31.4 (1969), pp. 483–486. url:
http://www.jstor.org/stable/25049616 (cit. on p. C126).

Author addresses

1. M. Hegland, Mathematical Sciences Institute, The Australian
National University, Australian Capital Territory 2601, Australia.
mailto:markus.hegland@anu.edu.au
orcid:0000-0002-5136-2883

2. C. J. Burden, Mathematical Sciences Institute, The Australian
National University, Australian Capital Territory 2601, Australia.
mailto:conrad.burden@anu.edu.au
orcid:0000-0003-0015-319X

3. Z. Stachurski, School of Engineering, The Australian National
University, Australian Capital Territory 2601, Australia.

https://doi.org/10.2307/2008355
https://github.com/JuliaApproximation/ApproxFun.jl
https://doi.org/10.1109/HPTCDL.2014.10
http://www.jstor.org/stable/25049616
mailto:markus.hegland@anu.edu.au
http://orcid.org/0000-0002-5136-2883
mailto:conrad.burden@anu.edu.au
http://orcid.org/0000-0003-0015-319X

	Introduction
	Mathematical modelling
	Rényi Point Process for [a,b]
	Randomly packing disks touching a central disk

	Integral equations
	Equation for EK(0,x)
	Equation for EF(0,x)
	Equation for EE2(0,x)

	Numerical solution
	Results

