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Abstract

We present a method for recovering the Hessian from a linear finite
element approach to achieve a higher rate of convergence. This method
uses an L2-based projection as well as boundary modification to achieve
and improve the convergence rate. The projection uses a biorthogonal
system to make the computation more numerically efficient. We present
numerical examples to illustrate the efficiency and optimality of our
approach on different meshes. The performance of our approach on
adaptively refined meshes is briefly explored.
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1 Introduction
The Hessian matrix is important in the adaptive finite element method since
it is used to inform and direct a refinement of an adaptive mesh. We propose
a computationally effective Hessian recovery method by using biorthogonal
projections with boundary modifications to recover the gradient [8, 11], and
then applying the biorthogonal projection with a new boundary modification
to recover the Hessian. Two direct applications of the gradient recovery lead
to a rate of convergence of O

(
h1.5

)
for the recovered Hessian, where h is the

mesh size. We therefore propose a simple modification of the approach, which
leads to an improved rate of convergence of O

(
h2
)
. The higher convergence

rate is beneficial because it means that the number of refinements to reach a
more accurate Hessian is reduced.

Second order derivatives such as the Hessian are recovered by post-processing
techniques. Post-processing is important in applied and computational math-
ematics because it allows further information to be obtained from what is
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already known. This has been demonstrated in applications of the finite
element method by techniques developed to perform gradient recovery, such
as those that use local or global least square fittings [7, 12, 13, 14], global or
local projections [2, 6], or averaging methods [3, 10].

The numerical results obtained in Section 5 agree with the rates obtained in
the literature [5] for the uniformly refined meshes. Our method of projection
is an efficient computation, since the only matrix that needs to be inverted is
a diagonal matrix, as described in Section 2.1.

Let our domain Ω ⊂ R2 be bounded and have polygonal boundary ∂Ω.
Let Th be a quasi-uniform partition of Ω into triangles. We define N to be
the set of all N nodes of the partition Th. We use standard Sobolev spaces

L2 (Ω) =

{
f :

∫
Ω

|f(x)|2 dx < ∞}
,

H1 (Ω) =
{
f : f ∈ L2 (Ω) ,∇f ∈

[
L2 (Ω)

]2}
.

We denote the conforming standard element space as

Vh =
{
v ∈ C0 (Ω) : v|T ∈ P1 (T) , T ∈ Th

}
,

with {ϕ1, . . . , ϕN} being a set of basis functions of Vh. For this article, we
use uh to denote a finite element solution.

2 Gradient recovery method

2.1 Biorthogonal projection

Our choice of gradient recovery method employs a biorthogonal projection
operator Πh to project ∇uh onto [Vh]

2. The projection is performed by finding
g1 = Πh

(
∂uh

∂x1

)
∈ Vh and g2 = Πh

(
∂uh

∂x2

)
∈ Vh such that∫

Ω

g1µj dx =

∫
Ω

∂uh

∂x1
µj dx for j ∈ {1, 2, . . . ,N} , (1)
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∫
Ω

g2µj dx =

∫
Ω

∂uh

∂x2
µj dx for j ∈ {1, 2, . . . ,N} , (2)

where µj ∈ Mh and Mh is a piecewise polynomial space whose basis is
constructed to satisfy a biorthogonal relation with the basis for Vh.

Take the basis of Vh, {ϕ1, . . . , ϕN} , to make the basis of Mh, {µ1, ..., µN} , by
satisfying the biorthogonality relation∫

Ω

ϕiµj dx = cjδi,j , cj ̸= 0 , i, j ∈ {1, 2, . . . ,N} .

Since g1, g2 ∈ Vh , we express them as g1 =
∑N

i=1 aiϕi and g2 =
∑N

i=1 biϕi ,
where ai, bi ∈ R . Substituting into (1) and (2) gives

N∑
i=1

ai

∫
Ω

ϕiµj dx =

∫
Ω

∂uh

∂x1
µj dx for j ∈ {1, 2, . . . ,N} , (3)

N∑
i=1

bi

∫
Ω

ϕiµj dx =

∫
Ω

∂uh

∂x2
µj dx for j ∈ {1, 2, . . . ,N} . (4)

Writing (3) in matrix form gives
∫
Ω
ϕ1µ1 dx . . .

∫
Ω
ϕNµ1 dx

... . . . ...∫
Ω
ϕ1µN dx . . .

∫
Ω
ϕNµN dx


a1

...
aN

 =


∫
Ω

∂uh

∂x1
µ1 dx

...∫
Ω

∂uh

∂x1
µN dx

 ,

which gives

Da⃗ = f⃗1 ,

where D is a diagonal matrix. This is a computationally inexpensive process
since D is a diagonal matrix. The same process is then applied to equation
(4) to find b⃗ = (b1, b2, . . . , bN) . This gives the functions g1 and g2.
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2.2 Boundary modification for gradient

A higher convergence rate is desirable because it requires fewer mesh refine-
ments to obtain a more accurate result. Nodes positioned on the boundary
achieve a rate of convergence of O

(
h1.5

)
when biorthogonal projection is

applied to recover the gradient [8, 11]. With boundary modification, the rate
is raised to O

(
h2
)

over the entire domain [8, 11].

This boundary modification is implemented by first defining the set of nodes
on the boundary and interior nodes, respectively, as

Nout = {x : x ∈ N , x ∈ ∂Ω} , Nin = N \ Nout .

We then expand this notion to the elements, such that the set of elements
that lie inside of the domain and that lie on the boundary, respectively, are

Tin = {T : T ∈ Th , x /∈ T ,∀x ∈ Nout} , Tout = Th \ T
in .

For each xi ∈ Nout we find the closest element Ti ∈ Tin , where we judge the
distance from the element as the distance between xi and the centre of the
element. We denote the nodes in Ti as xij and their corresponding functions
as ϕij , where j ∈ {1, 2, 3} . The modification to the basis functions is:

1. remove the basis function ϕi;

2. replace the basis functions ϕij with the functions

ϕ̃ij = ϕij + αjϕi , j ∈ {1, 2, 3} ,

where the αj are scalars satisfying

2∑
j=1

αjp
(
xij

)
= p (xi) , p ∈ P1 (Ω) .

The calculation of αj is equivalent to finding the barycentric coordinates of xi
in relation to Ti. We denote this boundary modified projection as ΠG∗

h that is
proven to have an O

(
h2
)

approximation property for a uniform mesh [8].
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(a) Before boundary modification (b) After boundary modification

Figure 1: 1D version of the boundary modification process, where the red
basis function is removed and the blue and green functions are modified.

Figure 2: The red node corresponds to the function being removed and the
blue triangle is the closest element that belongs to Tin. The three blue nodes
correspond to the functions that are being modified.

A visual representation of the function modification is shown in Figure 1 and
the closest element selection in Figure 2.
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3 Hessian recovery method
To recover the Hessian, we present three methods. The first method takes
the derivative of the gradient recovery approximation, which we denote as

ΠGD
h (u) =

 ∂
∂x
ΠG∗

h

(
∂u
∂x

)
∂
∂x
ΠG∗

h

(
∂u
∂y

)
∂
∂y
ΠG∗

h

(
∂u
∂x

)
∂
∂y
ΠG∗

h

(
∂u
∂y

) .

The second method applies the gradient recovery with boundary modification
to the first method:

ΠGG
h (u) =

ΠG∗
h

(
∂
∂x
ΠG∗

h

(
∂u
∂x

))
ΠG∗

h

(
∂
∂x
ΠG∗

h

(
∂u
∂y

))
ΠG∗

h

(
∂
∂y
ΠG∗

h

(
∂u
∂x

))
ΠG∗

h

(
∂
∂y
ΠG∗

h

(
∂u
∂y

)) .

When testing this second method, we observe that the Hessian error converges
at a faster rate when the boundary nodes and nodes that are directly connected
to a boundary node are removed, as shown in Figure 3. The third Hessian
recovery method uses a new boundary modification discussed in the next
section.

3.1 New boundary modification

The new boundary modification for the Hessian recovery is similar to that
used for gradient recovery. For the boundary modification, we define the set
of nodes on the outer two levels of the boundary to be Nout

2 , and the second
level interior nodes Nin

2 :

Nout
2 =

{
p : p ∈ N , ∃T ∈ Tout s.t. p ∈ T̄

}
, Nin

2 = N \ Nout
2 .

Similarly for the elements:

Tin
2 =

{
T : T ∈ Th , p /∈ T̄ ,∀p ∈ Nout

2

}
, Tout

2 = Th \ T
in
2 .
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Figure 3: The Hessian error over the entire domain against the Hessian error
over the domain where the two outermost boundary layers are not included.

We now remove all degrees of freedom in Nout
2 . The modification of the basis

functions follows the same procedure as the gradient modification outlined in
Section 2.2. We denote this boundary modified projection as ΠH∗

h .

When calculating the approximate Hessian with this boundary modification,
we use

ΠGH
h (u) =

ΠH∗
h

(
∂
∂x
ΠG∗

h

(
∂u
∂x

))
ΠH∗

h

(
∂
∂x
ΠG∗

h

(
∂u
∂y

))
ΠH∗

h

(
∂
∂y
ΠG∗

h

(
∂u
∂x

))
ΠH∗

h

(
∂
∂y
ΠG∗

h

(
∂u
∂y

)) .
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4 Adaptive mesh refinement
Adaptive mesh refinement works in two steps, the first being element selection,
and the second being mesh refinement. Element selection is accomplished by
applying a local error estimator ηT (Th;uh) ⩾ 0 to each element T ∈ Th , and
a global error estimator

η (T;uh) =

√∑
T∈T

ηT (T;uh)
2
,

over the whole domain Ω. The results of the error estimators are then used
with the Dörfler marking scheme to select which elements are refined. The
Dörfler marking scheme creates M ⊂ T to have minimal cardinality while
also satisfying

θη (T;uh)
2 ⩽

∑
T∈M

ηT (T;uh)
2
,

where θ ∈ [0, 1] is a fixed parameter. The set M is the list of elements
that require refinement. With this list of elements M, we apply Red-Green
refinement to refine the mesh [1, 4]. A red refinement is first applied to all
the elements selected. Those elements that have a common edge with a red
refined element, but are not red refined themselves, are marked for green
refinement. If an element is marked for green refinement more than once,
then a red refinement is applied to that element. Once all red refinements
are completed, then those elements marked for green refinement are refined.

5 Results
Here we compare how the Hessian recovery methods work with and without the
additional boundary modification in the uniform mesh refinement setting as
well as the adaptive mesh refinement setting. To demonstrate the effectiveness
of the methods, the sample problem is the Poisson problem in 2D: find u (x, y)
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(a) Red refinement (b) Green refinement (c) Adaptive mesh refinement

Figure 4: Adaptive refinements.

such that

−∆u = f in Ω, (5)
u = 0 on ∂Ω ,

where f ∈ L2 (Ω) . For the adaptive refinement, we use a modified residual as
the local error estimator:

ηT (T;uh) =

√
h2

∫
T

[H1,1 (uh) +H2,2 (uh) + f]
2
dx ,

where H is the recovered Hessian. The error of the recovered Hessian
is E (uh) = ∥∆u−H∥F . The error of the three recovery approaches ED,
EG and EH correspond to H = ΠGD

h , ΠGG
h and ΠGH

h , respectively. The norm
used is the Frobenius norm

∥A∥F =

√√√√ n∑
i

m∑
j

∥ai,j∥2L2(Ω) , A ∈ Rn×m .

When testing in the uniform refinement setting, the three Hessian recovery
methods are applied to uniform, criss cross and union jack meshes. These are
standard meshes that have uniform elements shown in Figure 5. The finite
element solution used while testing the uniformly refined meshes is

uh =

N∑
i=1

u (xi)ϕi . (6)
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(a) Uniform mesh (b) Criss cross mesh (c) Union Jack mesh

Figure 5: The three mesh types used to test the proposed recovery methods,
all have uniformly sized elements.

This is used to test the rate of convergence of the recovered Hessian in the
uniform refinement setting of Sections 5.1 and 5.2.

The Hessian recovery is also used in the setting of adaptive mesh refinement,
where the approximate solution uh is obtained from a Poisson fem solver.
The uh has the Hessian recovery applied, and the recovered Hessian is used
to direct the refinement of the mesh. The examples in Sections 5.1 and 5.2
demonstrate the viability of the recovered Hessian for directing the mesh
refinement to maintain the L2 and H1 convergence rates of the obtained
approximate solution uh.

5.1 Example 1

For this example, the domain is Ω = [0, 1]
2 . The exact solution to the Poisson

problem (5) is

u (x, y) = ex
(
x2 + y2

)
+ y2 cos (xy) + x2 sin (xy) .

First we apply the Hessian recovery to the uniform refinement setting where
refinement of the meshes is uniform. Figure 6 shows the Hessian error of the
three recovery methods when applied to the finite element solution uh for
uniformly refined meshes. The Hessian error is consistent across the uniform,
criss cross and Union Jack meshes for each of the recovery methods. The
modified projection operators ΠGD

h , ΠGG
h and ΠGH

h yield convergence rates
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(b) Criss cross mesh
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(c) Union Jack mesh

Figure 6: The performance of the pro-
posed Hessian recovery methods on
each type of uniformly refined mesh
for Example 1 of Section 5.1.

of O (h), O
(
h1.5

)
and O

(
h2
)
, respectively. This shows that the modified

boundary method presented for the Hessian recovery performs the best of the
three methods, but it requires that the element sizes be uniform across the
mesh.

Second, we apply the Hessian recovery in the adaptive refinement setting
where the mesh refinement is directed by the recovered Hessian and the
finite element solution uh is obtained from a finite element method (fem)
Poisson solver at each iteration. In Figure 7 we observe that the recovered
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Figure 7: Adaptive refinement re-
sults for Example 1 of Section 5.1.
The errors of the Hessians recovered
by (a) ΠGD

h , (b) ΠGG
h and (c) ΠGH

h .
The Dörfler marking scheme was used
with θ = 0.75 for element selection.

gradient and recovered Hessian have no guarantee to decrease as the degrees
of freedom increase [9]. The recovered Hessian and recovered gradient have a
similar error pattern, which is expected since the recovered Hessian is obtained
from the recovered gradient. Despite this non-convergence of the recovered
Hessian, when it is used to choose elements for refinement, the L2 and H1

errors decrease with optimal convergence rates O
(
h2
)

and O (h), respectively.
This demonstrates that using the recovered Hessian for directing the adaptive
mesh refinement is viable.
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(b) Criss cross mesh
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Figure 8: The performance of the pro-
posed Hessian recovery methods on
each type of uniformly refined mesh
for Example 2 of Section 5.2.

5.2 Example 2

For this example, the domain is Ω = [0, 1]
2 . The exact solution to the Poisson

problem (5) is

u (x, y) = 2π2 sin (πx) sin (πy) .

Results presented in Figures 8 and 9 are consistent with those in Example 1 of
Section 5.1. All the Hessian recovery methods preserve the O

(
h2
)

and O (h)
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Figure 9: Adaptive refinement re-
sults for Example 2 of Section 5.2.
The errors of the Hessians recovered
by (a) ΠGD

h , (b) ΠGG
h and (c) ΠGH

h .
The Dörfler marking scheme was used
with θ = 0.75 for element selection.

convergence rates for the L2 and H1 errors in the adaptive mesh refinement
setting. The uniform refinement results also show that ΠGH

h has the best
convergence rate of O

(
h2
)

and is consistent over the three different mesh
types.
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