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Abstract

The Concurrent Reduced Memory Access method (CRMA) is a scal-
able memory-efficient Monte Carlo method for computing the lineal
path function. It addresses an inherent memory bottleneck of lineal
path function algorithms by utilising known properties of the two-point
correlation function to reduce the number of voxels where the phase
value must be evaluated. The CRMA method reduces the computation
time and improves the scalability characteristics of the traditional lineal
path function Monte Carlo methods. CRMA also provides additional
information useful for analysing microstructures since the two-point cor-
relation function is computed as part of the method. The CRMA method
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offers an efficient, scalable and extendable solution for computing the
lineal path function.
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1 Introduction

Quantitative analysis of microstructures is widely used in various disciplines
to understand the relationship between material structure and physical prop-
erties [18]. In recent years, micro-computed tomography (CT) has become
increasingly popular for studying material microstructures, as it allows for
non-destructive imaging of the internal structure of a material and provides
a dataset of images for quantitative analysis [2, 8]. Micro-CT captures high-
resolution images of materials, and it is not uncommon for three-dimensional
images to contain billions of voxels. Developing appropriate methodologies,
tools, and algorithms to utilise the information collected in these large images
is an active area of research [6, 7, 12].

Two microstructure descriptors commonly used to investigate microstructure
formations are the lineal path function and the two-point correlation func-
tion [20]. The lineal path function gives the probability that a line segment
of a pre-specified length will be contained inside a phase of interest when
inserted randomly into a sample. Similarly, the two-point correlation function
gives the probability that two locations at a set distance apart are in the
same phase. These descriptors provide information about microstructure
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features at different length scales and are often combined to give a more
complete representation of a material [12|. Traditional methods for approxi-
mating the lineal path function involve Monte Carlo sampling schemes [14],
whereas recent work focuses on computing the lineal path function directly
from the chord length distribution function, another related microstructure
descriptor [17, 16|. Evaluating the lineal path function is computationally
challenging because any lineal path function algorithm needs to check the
material phase value at many voxels [17, 16, 21, 7, 20].

When a slight loss in precision is acceptable, Monte Carlo formulations reduce
the number of voxel phase evaluations required and provide an accelerated
method to estimate the lineal path function [21]. In time-sensitive applications,
such as iterative algorithms, Monte Carlo formulations are often favoured
over a complete computation. The wide range of applications and the utility
of the lineal path function in materials classification has made optimising its
computation an ongoing area of research [7].

Images collected with micro-CT contain large amounts of data, almost always
exceeding the limited sizes of current CPU caches. Therefore, data must be
continuously moved from RAM to CPU caches, resulting in a memory-bound
algorithm [11]. Additionally, since voxel locations often do not correspond to
adjacent or proximate memory locations, many voxels require a new cache
block to be read when evaluating a single line segment [9].

Measuring the lineal path function for arbitrary direction line segments results
in challenging memory access patterns since values corresponding to a segment
often do not lie in contiguous memory blocks. However, evaluations for
arbitrary direction line segments are essential to determine angular variation
in heterogenous and anisotropic materials [19]. Efforts have been made to
enhance the efficiency of lineal path function computation by creating better
contiguous memory patterns for chord-length-based algorithms [7]. Improving
general memory access patterns is still challenging for Monte Carlo methods
that consider line segments with arbitrary orientation since the values that
must be accessed are unknown a priori. Furthermore, typical CPU optimisation
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techniques, such as prefetching, are also difficult to utilise since the values
that will be accessed as part of the Monte Carlo procedure are random.
Parallelisation is also less effective when the algorithm is memory-bound
since simultaneous computation is limited by the memory bus bandwidth [9].
Thus, methods to reduce the memory-bound on the lineal path function
computation via Monte Carlo are beneficial and necessary for scalability and
high performance of the algorithm.

In this article, we propose the Concurrent Reduced Memory Access (CRMA)
method to accelerate the computation of the lineal path function by utilising
properties of the two-point correlation function. This is achieved by reducing
the number of voxels where the phase must be evaluated, minimising data
transfer from RAM to cache. Section 2 provides details on the computation of
the lineal path and two-point correlation functions on a digital microstructure
and introduces the CRMA method. Section 3 compares CRMA with an original
Monte Carlo method to compute the lineal path function. We demonstrate
the reduction in memory reads, computation time, and scalability achieved
by CRMA compared with an original Monte Carlo method. Our results
show that with this reduced memory access formulation, the computation
time for the lineal path function is reduced by 40%, the memory accesses
are reduced by 35%, and scalability is improved when multithreaded on an
12-core CPU. Furthermore, since CRMA also concurrently computes the two-
point correlation function, this combination of statistical descriptors is useful
in material classification and synthetic microstructure generation, where a
combination of descriptors is preferred. [12|. Finally, Section 4 provides
conclusions and discusses future high-performance computing applications of
CRMA.

2 Concurrent reduced memory access method

Micro-CT images produce a three-dimensional digital representation of the
internal microstructure of a material. Micro-CT images are greyscale and
stored in a 3D array A consisting of a collection of N; two-dimensional
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images, each with N, rows and N3 columns. Typical ranges for {N;}3_; are
between 80 and 1000 [13]. For the remainder of this article, we consider
equal dimensions N, hence N = N; = N; = N3, and the values in A to
be 8-bit integers ranging from 0 to 255. To focus our analysis on the solid
material formations within the microstructure, we create a second array A
containing two distinct phases: Q; (solid phase) and Q, (pore phase). Each
value in A corresponds to a value in fl, and the phase value is determined
using the Otsu thresholding method applied to the integer entries of A [15].
The appropriateness of the threshold is confirmed by visually inspecting and
confirming that solid regions in A correspond to the non-pore regions in the
original CT-image A [1]. In A, all voxels in Q; are assigned the integer value 1,
while voxels in Q) are assigned the value 0. Voxel positions in A are indexed
by j, k and | for each axis.

Let A be a digital microstructure defined above and [T in, Tmax] be a chosen
range of line segment lengths. We introduce a vector r := e;v; + e;v, + e3vs,
where {e1, €2, €3} C R? is a set of unit basis vectors and {vy,v;,v3} C R are

scalars such that
_ 2 2 2
Tmin < ||7]| =/ Vi + V5 + V5 < Thax -

The vector r can be translated such that it originates at a voxel vg =
(jo, ko, lo) in A and terminates at voxel

vr(vo,T) :=vo + 1 = ([jo + v, [ko +v2l, llo +v3l),

where [-] denotes the standard integer rounding function. Arbitrary direction
and segment lengths are introduced by varying vy, v, and v3. Methods
to analyse the microstructure of a material must be generalisable to non-
periodic microstructures, and it has been demonstrated that the assumption
of periodic boundaries does not introduce a systematic bias to the statistical
descriptors [5]. Suppose v = (j1, kr, l7) is located outside the boundary, that
is, j1, kt or ly is greater than N. In that case, periodic boundary conditions
are applied by taking each voxel index exceeding the boundary modulo the



2 Concurrent reduced memory access method C183

corresponding dimension of A, for example
vr = (jT(modN),kT,lT(modN)) if T > N and It > N.

The lineal path function L(r) on phase Q; is defined as the probability a
line segment with length r is wholly contained in the solid phase (); when
randomly inserted into a sample, and it contains coarse-level connectedness
information about the microstructure [14]. The lineal path function has the
properties

O0LL(r)<d, L(r)—0asr— 0. (1)

where @ is the phase volume fraction of the solid phase which decays to zero
under the assumption that the material lacks long-range order |7].

Bresenham’s line algorithm [3] is used to compute the voxel locations corre-
sponding to the line segments inserted in A. It is an efficient line drawing
algorithm used in computer graphics that computes the voxel locations of
the intermediate voxels of a line specified by its originating and terminating
voxels, vo and vy. Bresenham’s line algorithm uses only integer arithmetic
when computing the voxel positions, and the discrete line generated by the
algorithm may contain a number of additional voxels not equal to the segment
length ||r||. The Bresenham’s line evaluator function takes an originating
voxel vo and terminating voxel vr(vo, 1) and determines if all the voxels
corresponding to the line segment given by r are in the solid phase:

1 Voxels between vg and vi(vp, 1) are in Qy,

(2)

BLE(vo, vr) = {O otherwise.
Let r1,12,...,m be M vectors in A with the same length r = ||r|| and a
range of orientations. The lineal path function L(r) is computed by counting
the number of segments in the solid phase. Thus, for a sufficiently large
random sample of S initial positions uniformly distributed throughout A we
approximate

S M
Lir) ~ % Z1 (% Z] BLE(V%,VT(vg,rm))> . (3)
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Since the entries of A are in {0, 1}, evaluating BLE (v, v (vy, Tm)) is com-
pleted by taking the product of the line segment voxel values. Thus, (3) gives
the portion of segments in the solid phase. The above process is repeated
for various lengths T € [T, Tmax] , Which provides a lineal path function
distribution.

The previous sampling technique corresponds to the original formulation for
the Monte Carlo lineal path function [20], referred to as the Original MC
method for the remainder of this article, and is used for the comparisons in
Section 3.

The two-point correlation function s;(r) is a microstructure descriptor that
gives the probability that two voxels vg and vr at length r apart are contained
in the solid phase. The two-point correlation function has the properties

D2 < s(r) <D, sy(r) = @*as T — 00, (4)

for @ the phase volume fraction of the solid phase and where the infinite r limit
assumes the material lacks long-range order. The computation of the two-point
correlation function is closely related to the lineal path function (3), except
that the two-point correlation function requires only the phase values at the
originating and terminating voxel to be evaluated, and not any intermediate
voxel locations. Therefore, with the required adjustment to (3), the two-point
correlation function is approximated as

M

N
T) & %Z] ( Z].A v A (VT vo»rm))> ) (5)

for A € {0,1}, and where these two phase values are evaluated at the voxels
v{, and vr which are separated by vector 1y, with length r.

Since (5) and (3) both require a set of vectors and originating voxels, the CRMA
method is constructed by combining (3) and (5), whereby the local correlation
for a given line segment is computed first, and only if A(vg)A(vy) # 0, then
the corresponding lineal path evaluation BLE (v, vr) is commenced.
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Since ®? < s5(1) < @, the CRMA method has a probability between (1 — @)
and (1 — @®?), increasing with segment length 7, of only needing to test the
end voxels of a line segment, and not evaluate the intermediate voxels. This
probability is upper bounded by the long-range values of s;(r) and is always
defined and non-zero for porous materials. Therefore, the probability of
requiring only two memory accesses is (1 — ®?), even when T grows large,
making the CRMA method increasingly efficient for computing longer-length
line segments. For some porous materials, ® can exceed 60%. Hence, the
probability (1 — ®?) of requiring only two memory accesses is not necessarily
small for large r [10].

Memory reads from main memory may require an order of magnitude more
CPU clock cycles when compared to completing a single floating point op-
eration. Therefore, reducing the number of memory accesses is an effective
way to accelerate the computation of the lineal path function, as voxels that
need to be tested for most vector orientations are not located in adjacent or
proximate memory locations. Therefore, a new cache block must be read for
many values, resulting in an inefficient, congested data transfer from RAM to
the CPU cache [9].

Very efficient methods to compute the two-point correlation function using
Fast Fourier transforms (FFT) [4] are often used in combination with lineal
path function algorithms [7]. However, FFT methods do not provide the
local correlation information for a given line segment that allows the quicker
computation of the lineal path function.

To initialise the CRMA method, two integer storage arrays, TPC and LPF,
with M entries each, are generated to store the two-point correlation and
lineal path function for each length. Vectors ry,...,T\ are each comprised
of 14 directions corresponding to the vertices and faces of a cube, and are
initialised and used throughout the computation for the various samples.
During each iteration, a new random originating voxel vg is selected for each
of the M vectors. Subsequently, if the local two-point correlation condition
A(vo)A(vr) # 0 is satisfied, the mth value of the corresponding TPC array
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Algorithm 1 CRMA

Require: A, 1y,...,1\, S.
1: Initialise LPF, TPC
2: while s < S do

3: for each r,,, m=1,...,M do

4: Randomly select voxel location vg) in A.

5: Compute v§ (v, Tm).

6: Apply boundary conditions: if v§ & A, then
7: v5(j, Kk, 1) = (jr(modN), kr(modN), Iy (modN)).
8: if v§) and v§ in solid phase then

9: TPC[mM] +=1

10: if BLE(VE,Vv5) > 0 then

11: LPF[m] +=1

12: end if

13: end if

14: end for

15: s+=1

16: end while

17: for each m in {1,...,M} do

18: TPC[m]/S and LPF[m]/S

19: end for

20: Average TPC and LPF over M.
21: return LPF and TPC

is incremented. Similarly, if A(vg)A(vr) # 0 and BLE(vo,vr) > 0, the
mth value of the LPF array is incremented. Upon completion of the iterations,
the M values in TPC and LPF are divided by S. Finally, the various orientations
are averaged over M to compute L(r). The complete CRMA algorithm is
outlined in Algorithm 1. To compute the complete lineal path function
distribution L(7) ., . » & range of line segment lengths T € [ryin, Tmax] are
taken to be monotonically increasing integer values where 1,;, > 0 and 1., <
N, for N the dimension of A, and Algorithm 1 is repeated for each length.
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Algorithm 2 Original MC

Require: A, r1,...,1\, S
1: Initialise LPF
2: while s < S do

3: for each r,,, m=1,...,M do

4: randomly select voxel location v§ in A

5: compute Vi (v, )

6: apply boundary conditions: If vi ¢ A, then

7: vi(j, k, 1) = (jr(modN), ky(modN), Iy (modN))
8: if BLE(vY, V) > 0 then

9: LPF[m] +=1.

10: end if

11: end for

12: s+=1

13: end while

14: for m in {1,..., M} do
15: LPF[m]/S

16: end for

17: Average LPF over M.
18: return LPF

The Original MC method (outlined in Algorithm 2) is used for comparison
with CRMA and uses the same orientations M and number of samples S. The
critical difference is that segments are evaluated by checking BLE (vo,vr) > 0,
without the local correlation computation. When BLE(vo, V1) is evaluated,
if at any voxel the phase is not solid, then the evaluation is concluded.
To compute the complete lineal path function distribution, Algorithm 2 is
repeated for each length. Every effort has been made to optimise the efficiency
of the Original MC method.
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3 Results

Validation of the solution for both the CRMA method and the Original McC
method is performed using a test microstructure consisting of overlapping 3-
dimensional spherical porous inclusions with a fixed radius R (Figure 1(a)) [19].
The lineal path function for this test microstructure (Figure 1(b,c)) has a
known analytic formula for phase Q; [14] given by

LD (r) = @' ik, (6)

where 71 is the line segment length, ® the phase volume fraction, and R the
radius of the inclusions [14]. For the test microstructure, we consider line
segments with even integer lengths ranging from 0, 2,...,400, ® = 0.5, and
R=10.

There is good agreement between the lineal path function computed using
CRMA and Original MC (Figure 1(b,c)), as well as with the theoretical value
for the test microstructure given by (6). At line segment length r > 100,
an increased error exists between the two Monte Carlo methods and the
theoretical value. However, we see from Figure 1(b) that values of L(r) for
T > 100 are very close to zero, and the exponentially small values given
by (6) are not captured in this region with 10”7 samples. The Monte Carlo
simulations were completed using 107 line segments of each length r, and
while the smoothness of the CRMA and Original MC lineal path functions
indicate some initial method convergence, no convergence criteria were used
in this assessment.

Table 1 provides the raw computation time and mean squared error (MSE)
versus the analytic solution for both the CRMA and Original MC simulations
shown in Figure 1(b,c). The overall reduction in computation time from
the CRMA method is approximately 40%. Due to the inherent randomness
associated with both procedures, a degree of error between the two methods
is expected, and the magnitude of this disparity underscores a fundamental
agreement between the two methods. In order to assess the impact of
memory access patterns on the computational efficiency of the CRMA method,
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Figure 1: (a) 500° voxel test microstructure. (b) Comparison of the CRMA
method, the Original MC method and the analytic lineal path function
result (6). (c) Logarithmic scale comparison of the two methods demonstrates
sound agreement for all r plotted. Variation from the analytic solution
occurs for segments with length r > 100. The two-point correlation function
produced during CRMA computation is included as CRMA-TPC in (b) and (c).
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Table 1: Comparison of overall computation time and mean squared error
(MSE) for 107 line segments at length r = [0,2,...,400] of the CRMA and
Original MC methods when compared to the known analytic solution (6) for
the test microstructure in Figure 1(a).

method | compute time (s) MSE vs analytic (6)
CRMA 21 1.42x107°
Orig MC 35 1.40 x 107

the average time required to evaluate 10° iterations was computed across
varying line segment lengths r = 0,2,...,400, based on ten independent
trials. Figure 2(a) illustrates that for line segments with r < 12, the CRMA
method exhibits a slight increase in mean computation time relative to the
Original MC, due to additional computation and memory writing demands.
Conversely, for all r > 12, a discernible reduction in mean computation
time is evident for the CRMA method. To link the memory reads to the
mean computation time, minor modifications were made to the code to count
the total number of voxels accessed in A over ten runs of 10° iterations
(Figure 2(b)). The CRMA method achieves an overarching reduction of
approximately 35% in mean excess memory accesses (exceeding one per
segment) across all line segment lengths r. This reduction in mean excess
memory accesses (Figure 2(b)) corresponds with the observed reduction in
computation time (Figure 2(a)), thereby attributing the enhancement in
computation time to mitigated memory constraints on the algorithm.

Both the CRMA and Original MC methods are parallelised identically by
assigning each ry,...,1T\ to a single thread, where each thread manages
multiple segments. Load balancing is implemented so each thread processes
line segments of various lengths. This formulation is advantageous as it reduces
potential thread write conflicts and facilitates scalability across larger systems.
Figure 3 demonstrates the scalability of the two methods across 24 threads on
a single 12-core CPU. To test the scalability of the methods 10° line segments
at random lengths and orientations are tested throughout the sample, and the
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Figure 2: (a) Mean computation time for 10° lines with various lengths r (CPU:
Ryzen 5900x 3.7 GHz, 12 core, 24 threads) averaged over ten independent
runs on the test microstructure. Error bars represent the standard deviation
in timing across different runs. (b) Mean memory accesses required over ten
runs of 10° segments at distances ranging from 0 to 400 voxels.

mean compute time utilising a fixed number of threads is averaged across ten
independent trials. The Original MC method exhibits a greater than 8-fold
reduction in computation time when executed in parallel on 24 threads on a
single 12-core cPU (Figure 3(a)), and the CRMA method achieves more than
12-fold improvement over a single-threaded Original MC method. Since the
CRMA method reduces memory reads and transfer requirements, it achieves
additional speedup compared to the Original MC method when scaled on the
same hardware (Figure 3(b)), with this speedup increasing with the number
of threads. The total improved speedup attained through parallelisation of
the CRMA method is increased by 40% compared to the Original MC method.
There is a reduction in scaling performance for both methods at high (23 4 )
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Figure 3: (a) Scalability of CRMA and Original MC on Processor: Ryzen 5900
3.7 GHz, 12 core, 24 threads (b) Relative improvement per thread of speedup
of CRMA compared to the Original MC method. The test involves the compu-
tation of 10° line segments across various numbers of CPU threads.

thread counts, likely the result of limitations on the small size of the CPU
cache used for testing (64 MB L3, 6 MB L2).

4 Discussion and conclusions

The CRMA method achieves a reduced computation time compared to the
Original MC formulation by increasing the likelihood of line segment rejec-
tion with only two memory reads and by reducing the total memory reads
necessary to compute the lineal path function. Additionally, computing the
two-point correlation function without additional computational overhead
can be advantageous in specific applications [7]. The algorithm exhibits
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linear scalability on a single hyper-threaded CPU and demonstrates improved
scalability compared to the Original MC formulation. Furthermore, the CRMA
algorithm can be extended to run on a multi-node high-performance com-
puting system, achieving a second level of linear scaling across Monte Carlo
sample iterations, thereby providing sufficient computational throughput for
very large microstructures. CRMA offers robust algorithm acceleration by
leveraging known properties of the two-point correlation function to reduce
the required memory accesses when evaluating the lineal path function.
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