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Using the skew-t copula to model bivariate
rainfall distribution
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Abstract

We simulate monthly rainfall at two sites in the Murray–Darling
Basin. In order to construct a suitable joint distribution, we model
the individual totals using appropriate gamma distributions and use
a multivariate skew-t distribution to construct an appropriate cop-
ula. The skew-t distribution is considered robust as it includes both
skewness and tail dependence structure and allows us to model cor-
relations. We investigate the characteristics of a bivariate skew-t dis-
tribution and show how adjusting the parameters generates simulated
data which matches the observed data.
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1 Introduction and motivation

This study is aimed at modelling monthly rainfall at two different sites within
the same local region of the Murray–Darling Basin. The methodology de-
veloped here can be extended to multiple sites within the same area and
the further extension will be to construct a rainfall-runoff model for a catch-
ment. The Murray–Darling Basin is very important to Australia as it rep-
resents 39% of Australian national income from agricultural production and
in 2004–2005 it consumed about 83% of the water used for agriculture [7].
Hence, extensive study needs to be conducted related to water issues such
as rainfall modelling. In rainfall modelling, we try to develop a model to
generate synthetic rainfall data whose statistical characteristics match those
of the historical data. If done successfully, we can extend this mechanism
further to develop other water related models such as a rainfall-runoff model.
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Rainfall data has a skewed distribution. As well we are interested in the
interdependence of rainfall events at rainfall stations. The copula method,
which generates a general structure and can accommodate extreme events,
has been used to model the interdependency. Copulas are functions that
join multivariate distributions to their one dimensional marginal distribution
functions [6]. Some examples of copula types are the Gaussian copula and
the Student’s t copula (t-copula). The Gaussian copula is based on a mul-
tivariate normal distribution and does not model tail dependence, whereas
the t-copula is based on the multivariate Student’s t distribution and does
accommodate tail dependence. The tail dependence is used to define the
degree of dependence in the lower or upper tails of a bivariate distribution.
This concept is widely applied in finance to model dependence of loss events
with various assets [4]. In this study, the asymmetric t-copula, also known as
skew-t, is employed to analyse the asymmetric tail dependence using monthly
rainfall data.

2 Study area and data

The method is illustrated using monthly rainfall data from two different sites
within the same local region of the Murray–Darling Basin. The selected sites
are Hume and Beechworth, 46 km apart, in New South Wales and Victoria
respectively (Table 1). The data used was provided by the Australian Bu-
reau of Meteorology for a continuous period from 1928 until 1985 (58 years).
Table 2 shows that even though the sites are in close proximity, Beechworth
receives significantly greater rainfall on average, but also with greater vari-
ability.
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Table 1: Description of two selected sites in Murray–Darling Basin.
Station name State Abbreviation Latitude Longitude
Hume Reservoir NSW Hume −36.1039 147.0329
Beechworth Composite Vic Beech −36.3702 146.7132

Table 2: Summary of rainfall mean (mm) and standard deviation (sd)
(mm).

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Hume
Mean 43 43 46 55 61 65 74 78 62 74 51 49

sd 45 44 39 41 44 41 39 39 32 45 37 47

Beech
Mean 52 52 62 80 93 101 112 117 93 101 68 61

sd 46 58 47 59 66 63 56 53 46 52 42 47

3 Rainfall model

We discuss the theory of the development of our rainfall model. We choose
a skew-t copula based on the reasons mentioned in Section 1. The theory
of the univariate skew-t followed by the multivariate skew-t distribution are
presented in this section.

3.1 Univariate skew-t distribution

A random variable X has a skew-t distribution, X ∼ ST(µ,ω,γ,ν) if it has a
probability density function [3]

fST(x;µ,ω,γ,ν) =
2

ω
t(z;ν) T

{
γz

√
ν+ 1

ν+ z2
;ν+ 1

}
, x ∈ R ,
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where z = (x − µ)/ω , t(·) and T(·) stand for the univariate standard Stu-
dent’s t probability density function and cumulative distribution function
with ν + 1 , respectively, with location parameter µ ∈ R , scale parameter
ω ∈ (0,∞), shape parameter γ ∈ R and degrees of freedom ν. Skewness and
tail proportions are controlled by parameters γ and ν, respectively. When
γ = 0 , the standard t distribution is obtained and when ν → ∞ , the skew
normal distribution is formed. However when both γ = 0 and ν → ∞ , the
normal distribution is recovered.

3.2 Multivariate skew-t distribution

A higher dimension of skew-t distribution to handle multivariate data is
written as MST(µ,Ω,γ,ν) which has a probability density function of x ∈
Rd [2],

fMST(x;µ,Ω,γ,ν) = 2td(x− µ;Ω,ν) T

{
γTΩ−1(x− µ)

√
ν+ d

Q(x) + ν
;ν+ d

}
,

whereQ(x) = (x−µ)TΩ−1(x−µ). The d-dimensional Student’s t distribution
with zero location (µ = 0),Ω scale matrix and ν degrees of freedom is defined
as

td(x;Ω,ν) =
Γ [(ν+ d)/2]√

|Ω|(νπ)d/2Γ(ν/2)

(
1+

Q(x)

ν

)−(ν+d)/2

, x ∈ Rd,

where T(·) is the cumulative distribution function of Student’s t distribution
with ν+ d degrees of freedom.

4 Simulation experiment

As an illustration for the simulation experiment, we use a bivariate skew-t
distribution. The procedure is divided into three parts:
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1. fitting data to gamma marginals,

2. generating simulated data using the skew-t distribution and

3. comparing the analysis from Part 1 and Part 2.

4.1 Fitting data to gamma marginals

We select two sets of monthly rainfall data (1928–1985, 58 years) from two
adjacent rainfall stations in the Murray–Darling Basin, Hume and Beech-
worth. The stations are 46 km apart with lag zero cross-correlation of 0.88 .
The rainfall data is categorised into four different cases: (wet,wet), (wet,dry),
(dry,wet) and (dry,dry). For illustration, we only consider the first case, that
is (wet,wet) when both stations have rain. Therefore, we have pairs of posi-
tive numbers. The individual sets of rainfall data are fitted separately using
gamma marginals. The gamma distribution is chosen as it is suitable to
model continuous variables that are always positive and have a skewed dis-
tribution like rainfall totals. Furthermore, it is also flexible as it involves
two parameters, scale and shape. The probability density function for the
gamma distribution is

f(x,α,β) =
xα−1e−x/β

Γ(α)βα
, x > 0 and α,β > 0 .

The shape parameter α and the scale parameter β for each month are es-
timated using the maximum likelihood method (Table 3). These sets of
monthly rainfall data between Hume and Beechworth are then transformed
into bivariate uniform data using the fitted cumulative gamma density func-
tion.

The correlation and the tail proportion of the uniform data for Hume and
Beechworth are calculated (Table 4). In the following section we generate
simulated data using the bivariate skew-t.
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Table 3: The monthly values of shape parameter α and scale parameter β.
Hume Beechworth
α β α β

Jan 0.90 48.39 1.22 42.89
Feb 1.01 44.26 1.07 49.11
Mar 1.24 37.34 1.40 44.38
Apr 1.85 29.93 1.87 42.97
May 1.85 33.50 2.06 46.07
Jun 2.45 26.54 2.74 36.75
Jul 3.67 20.26 4.44 25.28
Aug 3.02 25.73 3.46 33.80
Sep 3.06 20.14 3.75 24.76
Oct 2.33 31.57 3.24 31.11
Nov 1.86 27.38 2.12 32.24
Dec 0.96 50.32 1.52 40.21

Table 4: Tail proportions and correlation coefficient.
Tail proportions Correlation (r)

lower 10% upper 10%
Observed 0.081 0.056 0.893
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4.2 Generation of simulated data using skew-t
distribution

For simulation we used codes from the ‘sn’ package in R developed by [1].
The ‘sn’ stands for skew normal and originally the codes were developed for
the skew normal distribution. Then, the author included the codes for the
skew-t distribution in the same package. The codes used are probability
density function, distribution function and random number generation for
the skew-t distribution (univariate: dst, pst, rst; multivariate: pmst, dmst,
rmst). We generated 105 simulated data values for the bivariate skew-t using
random number generation of multivariate skew-t, rmst(n,µi,Ω,γi,νi) for
i = 1, 2 . The mean and covariance were set to µ1 = µ2 = 0 , ω11 = ω22 = 1
and ω12 = ω21 = 0 . These values can be chosen arbitrarily as the effects are
removed when we transform the data to uniform. Therefore, there are three
free parameters namely; skewness γ, correlation ρ and degrees of freedom ν.
By varying the free parameters, we investigated the effect on correlation r and
tail proportions of the lower and upper 10% of the simulated data. The main
objective of this exercise is to match the correlation coefficient of the observed
data with that of the simulated data. The set of random numbers generated
by the bivariate skew-t can be between −∞ and +∞. Each set of bivariate
skew-t data generated was transformed to uniform data using marginals of
univariate skew-t, pst(n,µ = 0,ω = 1,γ,ν). Then, the correlation r and
the tail proportions (lower 10% and upper 10%) for the simulated uniform
data were calculated.

4.3 Analysis of the simulation process

The analysis of the simulation process is divided into two parts as follows.
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4.3.1 The effect of parameter variation on correlation and tail
proportions of simulated data

In each simulation, we generated 105 simulated data values. Firstly, the
values of parameters were varied systematically and we tried various com-
binations such as increasing the skewness value but with other parameters
fixed. Then we did the same by increasing the degrees of freedom and fix
other parameters. In each iteration, the value of simulated correlation and
the tail proportions were noted. Based on the simulated results we finally
decided that we should focus on finding the best values for the simulated
parameters by varying the values of skewness γ from 0 to 2, degrees of
freedom ν from 3.1 to infinity and model correlation ρ from 0.8 to 0.99.
Varying the degrees of freedom has only a slight effect on the simulation
results (Table 6). Therefore, we concentrated on variation of the skewness
and correlation parameters. Increasing the skewness, decreases the corre-
lation of the uniformised simulated data (Table 5). In order to match the
correlation of the uniformised simulated data with the uniformised observed
data, the correlation ρ chosen for the simulated data needs to be as high as
possible where 0.9 < ρ < 1 . Note that ρ is the model correlation which we
used to generate synthetic data with correlation r that matches the observed
correlation. Table 5 shows that as the value of skewness increases, the es-
timated values for the correlation decreases. However, there is little effect
on the value of the estimated correlation when the degrees of freedom varies
(Table 6). The correlation for simulated data increases as the correlation ρ
increases (Table 7).

4.3.2 Refining the simulation result

We would like to match the statistics of the uniformised simulated data with
the uniformised observed data as closely as possible. Based on the analysis of
simulation results in the previous section, the simulation results were refined
further by repeating the same process by carefully choosing the right combi-
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Table 5: Variation of skewness γ.
Model parameters Simulation results
ρ γ ν r lower 10% upper 10%
0.89 0.0 5 0.8721 0.0696 0.0696

0.5 0.8273 0.0594 0.0679
1.0 0.7699 0.0471 0.0670
1.5 0.7262 0.0368 0.0665
2.0 0.7091 0.0292 0.0668

Table 6: Variation of degrees of freedom ν.
Model parameters Simulation results
ρ γ ν r lower 10% upper 10%
0.89 1.5 3.1 0.7389 0.0381 0.0669

3.5 0.7252 0.0358 0.0700
4 0.7304 0.0370 0.0678
5 0.7299 0.0371 0.0669
10 0.7281 0.0362 0.0643
Inf 0.7270 0.0359 0.0627

Table 7: Variation of model correlation ρ.
Model parameters Simulation results
ρ γ ν r lower 10% upper 10%
0.80 1.5 5 0.556 0.023 0.056
0.85 0.651 0.029 0.066
0.90 0.752 0.039 0.069
0.95 0.867 0.055 0.077
0.98 0.945 0.069 0.086
0.99 0.971 0.078 0.090
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nation of the parameters. Therefore, the simulation process was reiterated to
refine the simulation results with a sample size of 104. Each simulation was
repeated five times and the mean of the results calculated. The set of parame-
ters that best match the observed statistics are ρ = 0.965 , γ1 = γ2 = −1.95
and ν = 5 . These parameters give the simulated correlation r = 0.892
and tail proportions of 0.082 and 0.055 , for lower 10% and upper 10% re-
spectively (Table 8). In comparison, the statistics of the observed data are
correlation 0.893 and with tail proportions of 0.081 and 0.056 , for lower 10%
and upper 10%, respectively.

5 Goodness of fit test

We use a graphical method to evaluate the goodness of fit between the ob-
served and the generated data. Figure 1 presents a scatter plot of empirical
copula versus theoretical copula as has been used by Genest and Favre [8]
and Wong et al. [5]. The empirical copula Cn is constructed using the ob-
served data which is transformed to uniform data on [0, 1] using the gamma
marginals as described in Section 4.1. Then the uniform data ranked and
used to calculate Cn. For the theoretical copula C̃, we generate 104 bivari-
ate data values from the bivariate skew-t model which is then transformed
to uniform using the univariate skew-t for each marginal. The generated
uniform data is also ranked and used to calculate C̃. The empirical copula is

Cn(u, v) =
1

n

n∑
i=1

I

(
Ri

n+ 1
6 u,

Si

n+ 1
6 v

)
,

where n is the sample size, Ri and Si are the rank for each marginal. In
our example we only deal with bivariate data; however, the formula can be
easily extended to multivariate data. I(A) defines the indicator variable for a
logical expression A: that is, I(A) = 1 if A is true; and I(A) = 0 if A is false.
The axes are rescaled on [0, 1]2 and a set of points within that configuration
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is calculated. For example, the point (0.025, 0.023) on the scatter plot of
theoretical versus empirical copula (Figure 1) is calculated from

1

691

691∑
i=1

I

(
Ri

691+ 1
6 0.2,

Si

691+ 1
6 0.3

)
and

1

10000

10000∑
i=1

I

(
Ri

10000+ 1
6 0.2,

Si

10000+ 1
6 0.3

)
.

The fitness of the empirical and theoretical copula is based on the closeness
of the points to the line y = x . However, the Kolmogorov–Smirnov test is
also conducted to compare the distributions of the empirical and theoretical
copula. The p-value for the test of equality of distributions is 0.967 which
is greater than 0.05 significance level, therefore we conclude that the two
distributions are not significantly different from one another.

6 Conclusion

The bivariate skew-t distribution is presented and the application of the
theory is also examined using monthly rainfall data from two sites in the
Murray–Darling Basin. Each marginal distribution of the observed data set
is transformed to a uniform distribution on [0, 1] using the gamma distribu-
tion. The simulated data are generated using the bivariate skew-t and each
marginal distribution of the generated data set is transformed to a uniform
distribution using the univariate skew-t. A simulation approach estimates
the parameters of the skew-t distribution. A refining process matches the
statistics between the observed and simulated data which is based on their
correlation coefficient and tail proportions. A plot of empirical copula ver-
sus theoretical copula illustrates the goodness of fit test coupled with the
Kolmogorov–Smirnov test. The results obtained demonstrate that the skew-t
copula is suitable for modelling monthly rainfall totals for correlated stations.
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Figure 1: Comparison of the theoretical and empirical copulas.
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Table 8: Refining simulation process.
Model parameters Simulation results
ρ γ ν r lower 10% upper 10%
0.90 2.0 5 0.733 0.031 0.065

−0.1 5 0.881 0.069 0.070
−2.0 5 0.732 0.069 0.032

0.91 −0.1 5 0.894 0.074 0.071
−1.0 5 0.802 0.068 0.050
−1.5 5 0.767 0.070 0.041

0.92 −0.1 5 0.906 0.075 0.074
−0.3 5 0.891 0.073 0.067
−1.5 5 0.790 0.071 0.045

0.93 −0.1 5 0.914 0.079 0.073
−0.4 5 0.895 0.074 0.069
−1.5 5 0.809 0.073 0.043

0.94 −0.1 5 0.928 0.082 0.078
−0.6 5 0.891 0.073 0.065
−1.5 5 0.842 0.075 0.051

0.95 −0.3 5 0.932 0.080 0.079
−0.8 5 0.898 0.075 0.065
−2.0 5 0.857 0.082 0.049
−2.1 5 0.849 0.077 0.046

0.96 −0.3 5 0.946 0.082 0.082
−1.3 5 0.895 0.076 0.064
−2.0 5 0.880 0.079 0.053

0.965 −1.0 5 0.917 0.084 0.070
−1.5 5 0.904 0.080 0.061
−1.8 5 0.895 0.081 0.054
−1.9 5 0.892 0.082 0.053
−1.95 5 0.892 0.082 0.055

observed values 0.893 0.081 0.056
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