
ANZIAM J. 54 (E) pp.E1–E25, 2012 E1

Two level parallel preconditioning derived
from an approximate inverse based on the

Sherman–Morrison formula

L. Zhang1 K. Moriya2 T. Nodera3

(Received 23 May 2009; revised 21 September 2012)

Abstract

The aism (Approximate Inverse based on the Sherman–Morrison
Formula) method is one of the existing effective methods for computing
an approximate inverse. This algorithm was proposed by Bru et
al. [SIAM J. Sci. Comput., 25, pp.701–715 (2003)]. Although it has
been showed that the aism is generally a stable option for large linear
systems of equations, its computation cost can be prohibitively high.
Complications also arise when an attempt is made to parallelize the
algorithm, since a sequential process is necessary. This article proposes
a two level aism in which the coefficient matrix is rearranged to a block
form, which is more suitable for parallel computation. This technique
can also significantly speed-up computations on a single processor. We
implemented this technique on an Origin 2400 system with an mpi to
illustrate its efficiency through numerical experiments.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2073

gives this article, c© Austral. Mathematical Soc. 2012. Published October 12, 2012. issn
1446-8735. (Print two pages per sheet of paper.) Copies of this article must not be made
otherwise available on the internet; instead link directly to this url for this article.

http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/2073

Contents E2

Contents

1 Introduction E2

2 The AISM method E4

3 The two level parallel AISM method E7

4 Application to the Krylov subspace method E10

5 Numerical experiments E12
5.1 Example: elliptic PDE in the square E14
5.2 Example: irregular coefficient matrix E18

6 Concluding Remarks E20

References E22

1 Introduction

Assuming that A is a real n × n nonsingular and nonsymmetric matrix,
our principal concern lies in finding the solution for the large, sparse linear
systems of equations

Ax = b . (1)

Scientific computations are fraught with these types of linear systems. For
solving these types of linear systems of equations, Krylov subspace methods
such as gmres(m), bi-cgstab(`) and idr(s), are commonly used [4, 20,
22, 24, 25]. However, for more complex problems, that is, those with a large
condition number or bad spectral distribution of the coefficient matrix A, the
Krylov subspace methods may stagnate or converge very slowly [21, 24]. The
use of certain preconditioning techniques is one of the options for improving
the convergence of Krylov subspace methods [4, 20].

1 Introduction E3

A preconditioning process includes computing a preconditioner M ∈ Rn×n
and solving the right preconditioned system

AMy = b and x =My , (2)

or alternatively solvin the left preconditioned system

MAx =Mb. (3)

There is also the option of two sided preconditioning. However, since right
preconditioning (2) does not change the residual rk = b−Axk of the original
equation (1), this right preconditioning is more commonly used [20]. In this
article, we chose to use right preconditioning.

For choosing the preconditioner M, the sparse approximate inverse of A is
often used in the field of parallel computation [2, 5, 6, 11, 12, 16, 17]. For
computing the sparse approximate inverse of coefficient matrix A, the aism
consistently performed well [3]. However, it was no easy task to parallelize the
Sherman–Morrison formula since a sequential process needed to be included.
The computation cost was relatively high. For these reasons, the aism is not
the favored method for computing large sparse linear systems of equations (1).
Recently, in order to reduce computation time, Moriya et al. [15] proposed a
partially parallelized aism based on a technique developed by Naik [19], in
which vectors were distributed in all processors that were making computations
and communications were carried out in turns.

The two level parallel technique rearranges the coefficient matrix to a block
form. This is a different approach from that of parallelizing the algorithm
itself, and is more suitable for parallel computation. This parallel technique
was originally proposed for the Cholesky decomposition [9], and Benzi et al. [2]
proposed a two level parallel preconditioner based on an ainv (Approximate
Inverse) with a two level parallel strategy.

In this article, we propose a two level parallel aism where the aism is applied
to the two level parallel strategy. The two level parallel aism was implemented
on an Origin 2400 and our numerical experiments indicate that our proposed

2 The AISM method E4

strategy is effective for parallel computation. Moreover, the two level aism
results in a significant speed-up for non-parallel computation. The numerical
results of this non-parallel performance are tabulated in this study in detail.

2 The AISM method

The aism (Approximate Inverse based on the Sherman–Morrison Formula)
method computes the approximate inverse using the Sherman–Morrison
formula [10, 18].

Sherman–Morrison Formula Given a nonsingular matrix B ∈ Rn×n and
two vectors x ∈ Rn and y ∈ Rn such that r = 1 + yTB−1x 6= 0 , the matrix
A = B+ xyT is nonsingular, and its inverse is

A−1 = B−1 − r−1B−1xyTB−1. (4)

Let xk ∈ Rn, yk ∈ Rn and A0 ∈ Rn×n satisfy Ak = A0 +
∑k

i=1 xiy
T
i , where

A0 is a nonsingular matrix, where k runs from 1 to n, and A = An . If Ak, xk
and yk satisfy the Sherman–Morrison formula’s conditions, then the inverse
of A can be computed by applying the Sherman–Morrison formula (4) n times
with

A−1 = A−1
0 −

n∑
k=1

r−1k A
−1
k−1xky

T
kA

−1
k−1 , rk = 1+ yTkA

−1
k−1xk , k = 1, . . . ,n ,

(5)
when equation (5) is rewritten into matrix form, and

A−1
0 −A−1 = ΦΩ−1ΨT , (6)

where Φ = [A−1
0 x1,A

−1
1 x2, . . . ,A−1

n−1xn], Ω
−1 = diag[r−11 , r−12 , . . . , r−1n] and

Ψ = [yT1A
−1
0 ,yT2A

−1
1 , . . . ,yTnA

−1
n−1]. Note that when matrix Φ and Ψ are

2 The AISM method E5

computed, A−1
0 , . . . ,A−1

n−1 needs to be computed. In order to avoid computing
A−1
0 , . . . ,A−1

n−1 explicitly, the vectors uk and vk are defined as

uk := xk −

k−1∑
i=0

vTiA
−1
0 xk

ri
ui , vk := yk −

k−1∑
i=0

yTkA
−1
0 ui

ri
vi , k = 1, . . . ,n .

Then,

A−1
k−1xk = A

−1
0 uk , (7)

yTkA
−1
k−1 = vTkA

−1
0 , (8)

rk = 1+ yTkA
−1
0 uk = 1+ vTkA

−1
0 xk . (9)

Equation (6) is rewritten with equations (7) and (8):

A−1
0 −A−1 = A−1

0 UΩ
−1VTA−1

0 , (10)

where matrices U = [u1,u2, . . . ,un] and V = [v1, v2, . . . , vn].

In the selection of A0, xk and yk, Bru et al. [3] proposed

A0 = sIn , (s > 0), xk = ek , yk = (ak − ak0)
T , k = 1, . . . ,n ,

where In ∈ Rn×n is an identity matrix, ek ∈ Rn is the kth column of In.
Vectors ak and ak0 are the kth row of matrices A and A0. Substitute A0, xk
and yk in equation (10), and the result is

A−1 = sIn − s
−2UΩ−1VT , (11)

and

uk = xk −

k−1∑
i=1

(vi)k
sri

ui , vk = yk −

k−1∑
i=1

yTkui

sri
vi , rk = 1+ (uk)k/s , (12)

where (vi)k is the kth element of vi, and (uk)k is the kth element of uk.

2 The AISM method E6

Algorithm 1: The aism method.

for k = 1, . . . ,n do
xk = ek, yk = (ak − sek)

T ;
uk = xk, vk = yk;
for i = 1, . . . ,k− 1 do

uk = uk −
(vi)k
sri

ui;

vk = vk −
yT
kui

sri
vi;

end
for i = 1, . . . ,n do

if |(uk)i| < tolU then drop-off (uk)i;
if |(vk)i| < tolV then drop-off (vk)i;

end
rk = 1+ (uk)k/s;

end

Matrices U and V are likely to be dense and if this is the case, then it will
be necessary to drop the small elements to achieve an approximate sparse
inverse of A:

A−1 ≈ sIn − s−2UΩ−1VT . (13)

Putting the above derivations all together, the algorithm of the aism is shown
in Algorithm 1.

Since the aism performs consistently well [3], it is often used for computing
the approximate inverse preconditioner for solving large sparse linear systems.

3 The two level parallel AISM method E7

3 The two level parallel AISM method

The two level technique rearranges the coefficient matrix into

PTAP =


A1 B1

. . .
...

Ap Bp
C1 · · · Cp As

 , (14)

where P is a permutation matrix. Since blocks Ai are independent of each
other, their approximate inverses can be computed in parallel. Here the
subscript s is different from the scalar in the aism.

In order to transform the coefficient matrix into the form given in equation (14),
graph partitioning and domain decomposition are used. In this article, graph
partitioning is used, since it is already available for general problems.

Let graph G = 〈V ,E〉 be the graph of matrix A ≡ (aij) ∈ Rn×n, where V =
{1, . . . ,n} is the set of vertices and E is the set of edges {〈i, j〉 | i, j ∈ V ,aij 6=
0}. Graph partitioning algorithms partition graph G into p subgraphs Gi
(i = 1, . . . ,p) that are roughly of equal size and have a smaller number of
edges that are cut by the partitioning. The nodes in subgraphs are then
divided into two groups. Nodes that are not connected by the edges cut by the
partitioning are called inner nodes, and the others are called separator nodes.
In this, the inner nodes in Gi are denoted as gIi, and the separator nodes
in Gi are denoted as gBi . The next step is to rearrange the nodes in the order
of gI1, g

I
2, . . . , gIp, g

B
1 , gB2 , . . . , gBp . Matrix A is also permuted according to the

new order, resulting in the block angular form given in equation (14). The
dimension of submatrix Ai consists of the number of inner nodes belonging
to subgraph Gi, and the dimension of As consists of the total number of
separator nodes.

For a given graph, the number of inner nodes in the sub graphs decrease
and the number of separator nodes increase when the number p increases.

3 The two level parallel AISM method E8

The dimension of Ai decreases and the dimension of the Schur complement
increases with p.

The next step is to obtain the inverse of PTAP. Its inverse is computed with

(PTAP)−1 =


A−1
1 E1

. . .
...

A−1
p Ep

S−1



I1

. . .

Ip
F1 · · · Fp Is

 , (15)

where Ei = −A−1
i BiS

−1 and Fi = −CiA
−1
i . S = As −

∑p
i=1CiA

−1
i Bi is

the Schur complement. Ii and Is are identity matrices that have the same
dimension asAi andAs. When we replaceA−1

i and S−1 with their approximate
inverses computed with the aism, the approximate inverse of PTAP is

(PTAP)−1 ≈


M1 Ē1

. . .
...

Mp Ēp
Ms



I1

. . .

Ip
F̄1 · · · F̄p Is

 , (16)

where Mi ≈ A−1
i , Ms ≈ S̄−1, Ēi = −MiBiMs , F̄i = −CiMi . S̄ = As −∑p

i=1CiMiBi is the approximate Schur complement. In this article, CiMiBi is
referred to as the local part of the approximate Schur complement. Usually,
Ēi and F̄i are not computed explicitly.

The two level aism computes the approximate inverse of PTAP with equa-
tion (16).

Level 1: Compute Mi ≈ A−1
i with the aism.

Level 2: Compute Ms ≈ S̄−1 with the aism.

The approximate inverse of PTAP is obtained by computing the approximate
inverses of Ai and S̄, which are much smaller than the original matrix A.
Instead of computing the original approximate inverse problem, (p+1) smaller
approximate inverse problems are computed.

3 The two level parallel AISM method E9

It is known that the computation cost for the original approximate inverse
problem is O(dim(A)3) [1, 3]. This indicates that the cost for a (p+1) smaller
approximate inverse problems is

O

(
p∑
i=1

dim(Ai)
3 + dim(S̄)3

)
,

where dim(D) is the dimension of matrix D. If p is selected properly, then
the computation cost of the (p+ 1) smaller approximate inverses are likely
to be more cost effective than the original calculations with a proper p. It is
likely that this will result in a significant speed-up on a single processor.

The optimum p on a single processor, denoted by poptS is

poptS = min
p

p∑
i=1

{
dim(Ai)

3 + dim(S̄)3
}

. (17)

This evaluation is relative, since the cost for an approximate inverse depends
heavily on the number of nonzero elements, but it is easy to implement and
effective to select the value of p.

After the aforementioned evaluation (17) is made, a two level parallel aism
parallel computation is implemented.

The computations of Mi in level 1 are independent of each other, and is
computed separately. In addition, the local part of the approximate Schur
complement CiMiBi is computed separately.

We set the value of p in equation (16) to coincide with the number of processors.
It is possible to have a different number of processors from the value of p,
but it will make the application far more complicated.

The first step is to let the ith processor compute Mi ≈ Ai and S̄i = CiMiBi ,
then send the computed S̄i = CiMiBi to a certain processor, for example,
let the first processor compute S̄ with S̄i = CiMiBi and its approximate
inverse Ms. After Ms is computed, the first processor sends it over to the

4 Application to the Krylov subspace method E10

Table 1: Steps of the two level parallel aism method

step first pe . . . pth pe

1 Compute M1 ≈ A−1
1 . . . Compute Mp ≈ A−1

p

2 Compute S̄1 = C1M1B1 . . . Compute S̄p = CpMpBp
3 Send S̄1 to other pes . . . Send S̄p to other pes
4 Compute S̄ = As −

∑p
j=1 S̄j . . . Compute S̄ = As −

∑p
j=1 S̄j

5 Compute Ms ≈ S̄−1 . . . Compute Ms ≈ S̄−1

other processors. In level 2, all processors with the exception of the first
processor are standing by. In order to avoid sendingMs to the other processors,
we let each processor compute S̄ and Ms simultaneously. Table 1 gives more
details of our two level parallel aism. Henceforth, a processor will be referred
to as a pe.

Similar to when a single processor is used, the optimum value of p of the
parallel computation is

poptP = min
p

max
i=1,...,p

{
(dim(Ai)

3) + dim(S̄)3
}

. (18)

4 Application to the Krylov subspace

method

This section explains how to apply the computed approximate inverse to the
Krylov subspace method. We use gmres(m).

After the approximate inverse is computed with equation (16), the ith pe will
contain data for Ai, Bi, Ci, As, Mi, S̄ and Ms. Based on this, we partition
any vector, for x ∈ Rn, in the gmres(m) as (x1, x2, . . . , xp, xs)

T , and let the
ith pe store the data of xi and xs. The dimensions of x1, x2, . . . , xp, xs will
coincide with the dimensions of A1,A2, . . . ,Ap,As.

4 Application to the Krylov subspace method E11

The multiplication of the permutated coefficient matrix PTAP with vector x
can be computed in the following manner:

A1 B1
. . .

...
Ap Bp

C1 · · · Cp As



x1
...
xp
xs

 =


A1x1 + B1xs

...
Apxp + Bpxs∑p
i=1Cixi +Asxs

 =


y1
...
yp
ys

 . (19)

If parallel computation is necessary, first let the ith pe compute yi and Cixi,
then send the computed Cixi to the other pes. Each pe will then compute ys
with the computed Cixi from the other pes. When the computation is
finished, the ith pe will contain the data for subvectors yi and ys of y, where
y = PTAPx.

The multiplication of the preconditioner with vector x is computed with
equation (20), where zs =

∑p
i=1 F̄ixi+xs . If parallel computation is necessary,

the ith pe should be allowed to compute F̄ixi separately, first. When this
process is finished, the computed F̄ixi are sent to the other pes and each pe
will proceed to compute zs =

∑p
i=1 F̄ixi with the data from F̄ixi they have

received from the other pes. After this, the ith pe will compute Mixi + Ēizs
and Mszs:
M1 Ē1

. . .
...

Mp Ēp
Ms



I1

. . .

Ip
F̄1 · · · F̄p Is



x1
...
xp
xs

 =


M1x1 + Ē1zs

...
Mpx1 + Ēpzs

Mszs

 .(20)

The inner products of vectors x and y are computed in the following manner:
α =
∑p

i=1〈xi,yi〉+ 〈xs,ys〉. If parallel computation is necessary, first let the
ith pe compute 〈xi,yi〉. The next step would be to compute 〈xs,ys〉 on one
of the other pes, for example the first one. The final step would be to gather
the computed results and to sum them up to get α.

5 Numerical experiments E12

Algorithm 2: Procedure of numerical experiment.

1. Compute the approximate inverse of coefficient matrix A using the
aism on a single pe;

2. Apply graph partitioning;
3. Compute the approximate inverse of PTAP with the two level aism on

a single pe with p = 2, 4, . . . , 16;
4. Compute the approximate inverse of PTAP with the two level parallel

aism on p pes (p = 2, 4, . . . , 16);
5. Compare the performance of the two level parallel aism versus the

parallel mr (Minimal Residual) method [8] and the parallel ilu
(Incomplete LU) decomposition;

Algorithm 3: Graph partitioning

1. Construct a graph of the coefficient matrix. The output should then be
transferred into a file according to the pmetis [13] format;

2. Run pmetis to divide the graph into p parts (p = 2, 4, . . . , 16);

5 Numerical experiments

We implemented the aforementioned algorithm on an Origin 2400 with mpi
(Message Passing Interface) to illustrate its efficacy. The numerical experi-
ments were carried out by Algorithm 2. The graph partitioning was carried
out according to Algorithm 3.

Parameter s in the aism was set to 1.5× ‖A‖∞ or 15× ‖A‖∞ . The default
value was 1.5×‖A‖∞ [3, 15]. The tolerance of U and V was tolU = tolV = tol,
where tol was set to 0.1 or 0.01. The default value was 0.1. When computing
the approximate Schur complement, little elements were not dropped off since
the computed matrices were still sparse enough in our experiments.

The initial matrix in the mr (Minimal Residual) method was set to zero
and the inner iteration number was set to ni = 2 or 5. Tolerance in the mr

5 Numerical experiments E13

method was set to 0.1 or 0.01.

For the parallel application of the ilu decomposition, we used the parallel
techniques proposed by Moriya et al. [14]. Let p be the number of pes,
and m be the number of row vectors of L and U covered by one pe. The
lth pe holds the ((l − 1)m + 1)th to (lm)th row vectors of L and U. The
multiplication of preconditioner (LU)−1 with any vector z is computed by
solving the following two equations

Lz̃ = z and Uw = z̃ . (21)

The lth pe only compute the ((l−1)m+1)th to (lm)th elements of z̃ and w.
After this step, z̃ needs to be solved. The ith elements of z̃ on the lth pe is
computed with

z̃i =
1

Li,i

zi −

(l−1)m∑
j=1

Li,jz̃j −

i−1∑
j=(l−1)m+1

Li,jz̃j

 . (22)

In order to compute the second part in between the parentheses (*) of the
above equation (22), it was necessary to obtain data for z̃j (j = 1, . . . , (l−1)m)
from the other pes. Computations and communications were carried out
in turns. If each pe sent their computed elements to the other pes after
the m elements were all computed, then the other pes would have to be
on standby mode for a long time. In order to reduce this waiting time, we
let each pe send their computed m̃ (6 m) elements to the other pes. w in
equation (21) was computed in the same way.

Further to this, we changed the value of m̃ and measured the computation
time of equation (21) of the ilu(0) decomposition. The m̃ that achieved the
shortest computation time was adopted.

We applied these three preconditioning techniques to the gmres(m) [22, 23] to
estimate the computed approximate inverse matrices. The initial approximate
value of gmres(m) was set to a zero vector and its convergence condition
was set to

‖rk‖2/‖b‖2 6 10−12. (23)

5 Numerical experiments E14

Table 2: Example 5.1: Results of graph partitioning for p.

p dim(Ai) dim(As)
2 18239/18239 386

4 9033/9024/9014/9013 780

6 5986/5892/5986/5992/5819/5975 1214

8 4384/4457/4365/4465/4439/4380/4448/4360 1566

10 3486/3557/3505/3446/3513/3456/3562/3478/ 1914

3411/3536

12 2864/2960/2898/2941/2852/2910/2846/2908/ 2064

2926/2948/2843/2904

14 2431/2522/2473/2489/2470/2467/2406/2514/ 2362

2412/2466/2444/2516/2415/2477

16 2173/2110/2198/2157/2155/2110/2202/2159/ 2460

2156/2182/2083/2095/2168/2199/2169/2088

The maximum iteration number was set to 20 000. The execution of each
method was interrupted if the residual norm did not converge after 20 000 it-
erations. The restart cycle of the gmres(m) was set to 30, 40 and 50.

All experiments were carried out on an Origin 2400 configured with 16mips
R12000 processors with a clock speed of 300MHz and 8GB of main memory,
using double precision C and mpi-1.2. cpu times were all measured in seconds.

5.1 Example: elliptic PDE in the square

We studied the following boundary value problem of the elliptic partial
differential equation in the unit square region Ω = [0, 1]2:

−uxx − uyy +D
{
(y− 1

2
)ux + (x− 1

3
)(x− 2

3
)uy
}
− 43π2u = G(x,y),

u(x,y)|∂Ω = 1+ xy,

5 Numerical experiments E15

where G(x,y) was chosen so that the exact solution was u = 1 + xy on Ω.
A five point central difference was applied, with uniform mesh spacing in
each direction. Dh was set to 2−7, where h = 1/193 was the mesh size. The
dimension of the coefficient matrix was 36 864.

The first step was to compute the approximate inverse of coefficient matrix A
with the aism on a single pe. The computation time was 3799 seconds.

The second step was to construct a graph of the coefficient matrix and to
partition it into p parts (p = 2, 4, . . . , 16). The time required for graph parti-
tioning was no more than one second. The results of the graph partitioning
are tabulated in Table 2. The dimension of As is the same as that of the
Schur complement. Table 2 shows that the subgraphs are approximately the
same size. The dimension of Ai decreases as p increases, and the dimension
of Schur complement increases as p increases.

Based on the data given in Table 2, we computed the value of poptS and poptP
with equations (17) and (18) separately. Note that poptS is the optimum value
of p on a single processor, and poptP is the optimum value of p in parallel
computation. The results were: poptS = 16 and poptP = 16.

A two level aism was run on a single pe to illustrate its efficiency. The data for
the computation time and speed-up are shown in Table 3. The data indicates
that a 14 optimal speed-up was achieved only on a single pe when p = 16.
This coincided with the value of poptS = 16 computed with equation (17).

The proposed two level parallel aism was then applied on p pes. The data for
computation times and speed-ups are shown in Table 3. An optimal speed-up
was achieved when 16 pes were used. This, too, coincided with the value of
poptP = 16 computed with equation (18).

Finally, we compared the two level parallel aism with the mr method and the
ilu decomposition. Since the computation time of the two level parallel aism
with 16 pes rendered the best results, we compared this with the performance
of the mr method and the ilu decomposition of 16 pes. The numerical results
are shown in Table 4, where Tpre is the computation time for preconditioning.

5 Numerical experiments E16

Table 3: Example 5.1: Numerical results of the two level aism on a single pe,
and of the two level parallel aism on p pes.

single pe p pes
p time speed-up time speed-up
1 3800 1 3800 −
2 1703 2 850 4

4 818 5 207 18

6 551 7 95 40

8 427 9 58 65

10 361 11 43 89

12 316 12 34 113

14 295 13 31 124

16 277 14 28 137

For the mr and aism, Tpre is the time required for computing their approximate
inverses. For the ilu decomposition, Tpre is the time required for an incomplete
decomposition. it is the iteration number for the gmres(m). Ttotal is the
total computation time, including the preconditioning time, in seconds.

Table 4 indicates that the mr method converges only when tol = 0.01 and
imax = 3. Although the computation time of the preconditioning for the aism
was longer than that of the ilu decomposition, there was no striking difference
in their total computation times. When we applied the ilu decomposition
using 16 pes, it was necessary to determine the proper value of m̃ by changing
it with various values and measuring the computation time of equation (21).
This was clearly a more complicated process than the two level parallel aism.
In this example, the proper value of m̃ was 2 304.

5 Numerical experiments E17

Table 4: Example 5.1: Numerical results of gmres(m) with 16 pes; times
are in seconds; it denotes the number of iterations.

Iterative solver
Preconditioner Tpre gmres(30) gmres(40) gmres(50)

it Ttotal it Ttotal it Ttotal
None 0.0 − − − − − −
aism

tol s/‖A‖∞
0.1 1.5 27 12950 1255 10632 1129 8395 973

0.1 15 38 12237 1594 10727 1505 8748 1314

0.01 1.5 114 1637 801 1625 819 1222 650

0.01 15 166 1446 1100 1458 1137 1280 1017

ilu(0) 1 18258 1979 12164 1375 9536 1120

ilu(1) 1 5650 873 5114 816 4188 689

ilu(2) 2 2603 524 2990 616 2558 537

mr
tol imax
0.1 1 200 − − − − − −
0.1 2 379 − − − − − −
0.1 3 560 − − − − − −
0.01 1 200 − − − − − −
0.01 2 381 − − − − − −
0.01 3 558 18188 1292 17058 1331 10561 1086

• −, the residual norm could not converge within the maximum iterations.
• imax, inner iterations of the mr method.

5 Numerical experiments E18

Table 5: Example 5.2: Results of graph partitioning for p

p dim(Ai) dim(As)
2 24884/24869 2240

4 12288/11164/11702/11598 5241

6 6899/7065/7929/7567/7123/7530 7880

8 5570/5629/4984/5165/5497/5320/5580/5084 9164

10 3787/3745/4416/4050/4245/4240/4187/4375 10967

4117/3864

12 3520/3586/3243/3233/2973/3138/3349/3251 12220

3489/3287/3194/3510

14 2802/2386/2623/2627/3046/3051/2847/3012 13046

2556/2931/2804/2917/2523/2822

16 2599/2331/2590/2409/2278/2353/2214/2215 14031

2322/2461/2387/2258/2307/2489/2460/2289

5.2 Example: irregular coefficient matrix

Our second example was a study of a linear system of equations where the
coefficient matrix was far more irregular than the coefficients in the previous
one. We used matrix “ecl32” from the Florida Sparse Matrix Collection [7].
Its dimension is 51 993 with 380 415 nonzero elements. The right vector b
was decided by letting the exact solution be (1.0, 1.0, . . . , 1.0).

The first step was to compute the approximate inverse of coefficient matrix A
with the aism on a single pe. The computation time was 4577 seconds.

Next, we carried out the graph partitioning in the same manner as Example 5.1.
The time required for graph partitioning was no more than three seconds.
The results of the graph partitioning are shown in Table 5. Table 5 suggests
that the dimension of Ai decreases as p increases and the dimension of the
Schur complement increases as p increases, which is similar to Example 5.1.

5 Numerical experiments E19

Table 6: Example 5.2: Numerical results of the two level aism on a single pe,
and of the two level parallel aism on p pes

single pe p pes
p time speed-up time speed-up
1 4578 1 4578 −
2 2265 2 1107 4

4 1438 3 351 13

6 1422 3 281 16

8 1489 3 271 17

10 1692 3 307 15

12 2023 2 370 12

14 2241 2 396 12

16 2651 2 447 10

The dimension of Ai was quite different from that of Example 5.1. The
dimension of As, which is same as the dimension of the Schur complement,
becomes larger when p increases. When p = 16 , the dimension of the Schur
complement is about seven times that of the dimension of Ai. This can be
explained by the irregular distribution of the nonzero elements of A. Based
on the data tabulated in Table 5, the results were poptS = 8 and poptP = 8

with equations (17) and (18).

A two level aism was run on a single pe to illustrate its efficiency. The data
for the computation time and speed-up are shown in Table 6. From this
data we know that a optimal 3.2 speed-up was achieved only on a single pe
when p = 6 . The real poptS was six. This is different when the value is
computed with equation (17). As mentioned in section 3, equations (17)
and (18) do not provide an exact estimation, since the computation cost
deeply depends on the number of nonzero elements. In this example, the
nonzero elements were much more irregular than in Example 5.1, so the poptS
computed with equation (17) was different from the actual calculation cost.

6 Concluding Remarks E20

However, equation (17) was still useful in terms of finding the proper p.

We applied the proposed two level parallel aism on p pes. The data for
the computation times and speed-ups are shown in Table 6. An optimal
speed-up was achieved when eight pes were used, which coincides with the
value computed with equation (18).

Finally, we made a comparison of the two level parallel aism, the mr method
and the ilu decomposition. Since the computation time of the two level
parallel aism with eight pes was the shortest, we compared the different
methods using eight pes. For this example, the proper value of m̃ in the ilu
decomposition was 6 500.

The numerical results are tabulated in Table 7. Table 7 shows that the mr
method does not converge. The total computation time of the ilu decom-
position was shorter than the two level parallel aism, but the computation
time of the ilu decomposition depended heavily on the value of m̃. If an
unsuitable m̃ was used, then the computation time increased significantly.
For example, when we set m̃ = 813 , the total computation time was three
times longer than that of the two level parallel aism.

6 Concluding Remarks

We proposed a strategy for the parallel implementation of the aism. Numerical
experiments of two different linear systems of equations demonstrated that the
proposed parallel implementation can perform effectively and underscores the
efficiency of our proposed strategy as an effective scheme for parallelizing the
aism. The numerical results presented in this article suggest that our aism is
potentially a useful tool for obtaining solutions for large sparse linear systems
of equations using modern high performance architectures. In addition,
instead of computing the approximate inverse problem of the original matrix,
the two level aism computes several small approximate inverse problems.
When the computing cost of these small problems is lower than the original

6 Concluding Remarks E21

Table 7: Example 5.2: Numerical Results of the gmres(m) with eight pes;
times are in seconds; it denotes the number of iterations.

Iterative solver
Preconditioner Tpre gmres(30) gmres(40) gmres(50)

it Ttotal it Ttotal it Ttotal
None 0.0 − − − − − −
aism

tol s/‖A‖∞
0.1 1.5 271 2863 1014 2754 1052 1857 848

0.1 15 290 2508 1003 3623 1408 2009 960

0.01 1.5 310 1580 790 1926 944 2435 1173

0.01 15 335 2790 1284 1962 1050 1854 1057

ilu(0) 1 1354 285 1307 289 874 203

ilu(1) 6 1165 443 854 337 985 398

ilu(2) 19 1170 620 1185 638 728 408

mr
tol imax
0.1 1 1023 − − − − − −
0.1 2 1971 − − − − − −
0.1 3 2920 − − − − − −
0.01 1 1023 − − − − − −
0.01 2 1972 − − − − − −
0.01 3 2917 − − − − − −

• −, the residual norm could not converge within the maximum iterations.
• imax, inner iterations of the mr method.

References E22

problem, running the two level aism on a single processor will result in a
significant speed-up. Further research is needed to improve its performance
when the Schur complement is large and more numerical experiments are
necessary for determining whether the approximate inverse of the Schur
complement should be computed in parallel to maximize performance levels.

Acknowledgements This research was supported by the Fundamental Re-
search Funds for the Central Universities (No.201013043), NSFC (No.10971204)
and SRF for ROCS, SEM.

References

[1] Benzi, M., and Tůma, M., A Sparse Approximate Inverse Preconditioner
for Nonsymmetric Linear Systems, SIAM J. Sci. Comput., 19 (1998)
968–994. doi:10.1137/S1064827595294691 E9

[2] Benzi, M., Maŕın, J., and Tůma, M., A Two-level Parallel
Preconditioner Based on Sparse Approximate Inverse, Iterative Methods
in Scientific Computation IV, D.R. Kincaid, A. C. Elster, eds. IMACS
Series in Computational and Applied Mathematics, IMACS, New
Brunswick, NJ (1999) 167–178 . E3

[3] Bru, R., Cerdán, J., Maŕın, J., and Mas, J., Preconditioning Sparse
Nonsymmetric Linear Systems with the Sherman–Morrison Formula,
SIAM J. Sci. Comput., 25 (2003) 701–715 .
doi:10.113/S1064827502407524 E3, E5, E6, E9, E12

[4] Bruaset, A. M., A Survey of Preconditioned Iterative Methods, Pitman
Research Notes in Mathematics Series, No. 328, Longman Scientific &
Technical, U. K (1995). E2

http://dx.doi.org/10.1137/S1064827595294691
http://dx.doi.org/10.113/S1064827502407524

References E23

[5] Chow, E., and Saad, Y., Approximate Inverse Techniques for
Block-partitioned Matrices, SIAM J. Sci. Comput., 18 (1997)
1657–1675 . doi:10.1137/S1064827595281575 E3

[6] Chow, E., and Saad, Y., Approximate Inverse Preconditioners via
Sparse-sparse Iterations, SIAM J. Sci. Comput., 19 (1997)
995–1023(1997) doi:10.1137/S1064827594270415 E3

[7] Davis, T., University of Florida Sparse Matrix Collection. NA Digest, 92,
1994, http://www.cise.ufl.edu/research/sparse/matrices E18

[8] Grote, M., and Huckel, T.: Parallel Preconditioning with Sparse
Approximate Inverses, SIAM J. Sci. Comput., 18 (1997) 838–853 .
doi:10.1137/S1064827594276552 E12

[9] Heath, M. T., Ng, E., and Peyton, B. W., Parallel Algorithms for Sparse
Linear Systems, SIAM Review., 33 (1990) 420–460. doi:10.1137/1033099
E3

[10] Hager, W. W., Updating the Inverse of a Matrix, SIAM Rev., 31 (1989)
221–239, . doi:10.1137/1031049 E4

[11] Huckel, T., Efficient Computation of Sparse Approximate Inverses,
Numer. Lin. Alg. Appl., 5 (1998) 57–71.
doi:10.1002/(SICI)1099-1506(199801/02)5:13.0.CO;2-C E3

[12] Huckel, T., Approximate Sparsity Patterns for the Inverse of a Matrix
and Preconditioning, Appl. Numer. Math., 30 (1999) 291–303.
doi:10.1016/S0168-9274(98)00117-2 E3

[13] Karypis, G., and Kumar, V., A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs, SIAM J. Sci. Comput., 20
(1998) 359–392. doi:10.1137/S1064827595287997 E12

[14] Moriya, K. and Nodera, T, The Parallelization of Preconditioner for
Large Sparse Linear Systems of Equations, Bulletin of the JSIAM (in
Japanese), 12 (2002) 14–28. E13

http://dx.doi.org/10.1137/S1064827595281575
http://dx.doi.org/10.1137/S1064827594270415
http://www.cise.ufl.edu/research/sparse/matrices
http://dx.doi.org/10.1137/S1064827594276552
http://dx.doi.org/10.1137/1033099
http://dx.doi.org/10.1137/1031049
http://dx.doi.org/10.1002/(SICI)1099-1506(199801/02)5:13.0.CO;2-C
http://dx.doi.org/10.1016/S0168-9274(98)00117-2
http://dx.doi.org/10.1137/S1064827595287997

References E24

[15] Moriya, K, Zhang, L. and Nodera, T., An Approximate Matrix Inversion
Procedure by Parallelization of the Sherman–Morrison formula, The
ANZIAM J., 51 (2009) 1–9. doi:10.1017/S1446181109000364 E3, E12

[16] Moriya, K, Zhang, L. and Nodera, T., Efficient Approximate Inverse
Preconditioning Techniques for Reduced Systems on Parallel Computers,
Substracting Techniques and Domain Decomposition Method, Edited by:
F. Magoules, Saxe-Coburg Pub. (2010) 203–228. doi:10.4203/csets.24.8
E3

[17] Moriya, K. and Nodera, T., A New Scheme of Computing the
Approximate Inverse Preconditioner for the Reduced Linear Systems, J.
of Comp. and Appl. Math., 199 (2007) 345–352.
doi:10.1016/j.cam.2005.08033 E3

[18] Sherman, J. and Morrison, W., Adjustment of an Inverse Matrix,
Corresponding to a Change in One Element of a Given Matrix, Ann.
Math. Statist., 21 (1950) 124–127. doi:10.1244/aoms/1177729893 E4

[19] Naik, V. K., A Scalable Implementation of the NAS Benchmark BT on
Distributed Memory Systems, IBM Systems Journal, 34 (1995) 273–291.
doi:10.114/sj.342.0273 E3

[20] Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Ed. SIAM
(2003). doi:10.1137/1.9780898718003 E2, E3

[21] Saad, Y., Preconditioning Techniques for Nonsymmetric and Indefinite
Linear Systems, J. Comput. Appl. Math., 24 (1988) 89–105.
doi:10.1016/0377-0427(88)90345-7 E2

[22] Saad, Y., and Schultz, M. H., gmres: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems. SIAM J. Sci.
Statist. Comput., 7(1986) 856–869 . doi:10.1137/0907058 E2, E13

[23] Shimoncini, V., On the Convergence of Restarted Krylov Subspace
Method, SIAM J. Matrix Anal. Appl., 22 (2000) 430–452.
doi:10.1137/S0895479898348507 E13

http://dx.doi.org/10.1017/S1446181109000364
http://dx.doi.org/10.4203/csets.24.8
http://dx.doi.org/10.1016/j.cam.2005.08033
http://dx.doi.org/10.1244/aoms/1177729893
http://dx.doi.org/10.114/sj.342.0273
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.1016/0377-0427(88)90345-7
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/S0895479898348507

References E25

[24] Simoncini, V. and Szyld, D. B., Recent Computational Developments in
Krylov Subspace Methods for Linear Systems, Numer. Lin. Alg. Appl.,
14 (2007) 1–59. doi:10.1002/nla.499 E2

[25] Van der Vorst, H., Iterative Krylov Methods for Large Linear Systems,
Cambridge University Press (2003). doi:10.1017/CBO9780511615115 E2

Author addresses

1. L. Zhang, College of Mathematical Sciences, Ocean University of
China, 23 XiangGangDongLu Road, Qingdao, ShanDong, 266071,
China.
mailto:zhanglinjie@hotmail.com

2. K. Moriya, Ohi-Branch, Nikon System Inc., Japan.
mailto:kmoriya@nikon-sys.co.jp.

3. T. Nodera, Department of Mathematics, Faculty of Science and
Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama
223-8522, Japan.
mailto:nodera@math.keio.ac.jp

http://dx.doi.org/10.1002/nla.499
http://dx.doi.org/10.1017/CBO9780511615115
mailto:zhanglinjie@hotmail.com
mailto:kmoriya@nikon-sys.co.jp.
mailto:nodera@math.keio.ac.jp

	Introduction
	The AISM method
	The two level parallel AISM method
	Application to the Krylov subspace method
	Numerical experiments
	Example: elliptic PDE in the square
	Example: irregular coefficient matrix

	Concluding Remarks
	References

