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Analytic solution of nonlinear batch reaction
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Abstract

The classical nonlinear reaction kinetics equations are solved us-
ing an analytic technique for solving nonlinear problems known as
the homotopy analysis method. An explicit analytic solution for the
concentration of reactants and products that is uniformly valid for
all times is presented. Numerical simulations based on Runge–Kutta
initial value problem solvers verify our analytic solutions with good
agreement.
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1 Introduction

Batch reactors provide flexible means of producing high value-added products
in specialty chemical, bio-technical, and pharmaceutical industries. To realize
the production objectives, these batch reactors have to be operated optimally
in a precise fashion. Batch reactor design has been studied from various
perspective in order to develop systematic optimization tools to improve
performance [1]. Friedrich and Perne [2] presented that the design of batch
reactors means not only the design of equipment, but also the design of
operation.

In the last four decades or so, many chemical producers moved from the
relatively stable world of large continuous plant production to the much
more turbulent environment of multi-product batch production in order to
better adjust to changing market conditions. Kawarasaki et al. [3] intensively
investigated and optimized several reaction conditions of cell-free protein
synthesis such as temperature, buffers, tRNAS, and creatine phosphate.

Fulcher et al. [4] investigated and then provided insight into, the physical be-
haviour of the reaction mixture, and to evaluate the effectiveness of intrusive
nutrient addition. The study showed that results for unstirred, batch zeo-
lite A reaction systems the non-solid gel-fraction changed during the course
of the reaction. Bonvin [5] presented a personal, thus necessarily subjective,
view of the operation of batch and semi-batch reactors. The emphasis in
this review was on the analysis of industrial challenges and the definition of
academic opportunities.
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Van Woezik and Westerterp [6] focused on the thermal dynamics of a semi-
batch reactor, in which multiple exorthermic, liquid-liquid reactions are car-
ried out. Muske et al. [7] presented a comparison of results obtained from
deterministic and stochastic model-based optimization approaches for the
determination of the optimal open-loop operating policy for a semi-batch
reaction system. Hua et al. [8] proposed a cascade closed-loop optimization
and control strategy for batch reactors.

Zhang and Smith [9] addressed a systematic methodology for batch and semi-
batch reactor design and optimization for ideal and non-ideal mixing. The
method starts from a general representation in the form of a temporal su-
perstructure based on the similarity of between plug flow reactors and ideal
batch reactors. Goncalves et al. [10] compared the performance of batch and
semi-batch reactors, under optimal operational conditions of amoxicillin en-
zymic synthesis at 25◦ and pH ≈ 6.5 . Most recently, Jana and Adari [11]
dealt with the advanced adaptive control of a batch reactive distillation col-
umn for the production of ethyle.

Few, if any, attempted to solve batch problems analytically. To that end,
this paper aims to obtain an analytic solution of these nonlinear batch reac-
tion kinetics equations by using the homotopy analysis method (ham). This
is a fairly new technique that has been successfully applied in the analysis
of systems of nonlinear equations in other areas of science and engineering
particularly in fluid dynamics. Liao [12] gave a systematic description of ho-
motopy analysis method (ham), by means of an operator to denote non-linear
differential equations in general. They also generally discussed the conver-
gence of the related approximate solution sequences and showed that, as
long as the approximate solution sequence given by the ham is convergent, it
must converge to one solution of the non-linear problem under consideration.
Liao [13] further improved the homotopy analysis method and systematically
described it through a typical non-linear problem.

Liao [14] applied the ham to give a convergent series solution of non-similarity
boundary-layer flows. Mehmood and Ali [16] investigated the incompressible
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generalized viscous flow with heat transfer analysis in the presence of viscous
dissipation. Complete analytic solutions for velocity and temperature were
obtained by homotopy analysis method. Ali and Mehmood [17] dealt with
the unsteady boundary layer flow of viscous fluid in porous medium started
due to the impulsively stretching of the plane wall using the homotopy anal-
ysis method. Mehmood et al. [18] presented a complete analytic solution to
the unsteady heat transfer flow of an incompressible viscous fluid over a per-
meable plane wall. The homotopy analysis method was also used by Hayat
et al. [19] to investigate the flow of a fourth grade fluid past a porous plate.
Sajid and Hayat [20] proved that the perturbation and homotopy perturba-
tion solutions for two problems, (i) unsteady convective-radiative equation
and (ii) non-linear convective-radiative conduction equation, are only valid
for weak non-linearity.

Cheng et al. [21] presented a similar solution for the nano boundary layer
with a Navier boundary condition. The work considered three types of flow:
(i) flow past a wedge; (ii) flow in a convergent channel; (iii) flow driven
by an exponentially varying outer flow. The resulting differential equations
are solved by the homotopy analysis method. Alizadeh-Pahlavan and Sad-
egy [22] studied unsteady mhd flow of a Maxwellian fluid above an impul-
sively stretched sheet, under the assumption that boundary layer approxi-
mation is applicable. Bararnia et al. [23] employed the homotopy analysis
method to investigate the momentum, heat and mass transfer characteris-
tics of mhd natural convection flow and heat generation fluid driven by a
continuously moving permeable surface immersed in fluid saturated porous
medium. Khan et al. [24] applied the homotopy analysis to develop an ana-
lytic approach for nonlinear differential equations with time delay. Allan [25]
used the ham to solve a non-linear, chaotic system of ordinary differential
equations (Lorenz system). Xu et al. [26] investigated the time fractional
partial differential equations by means of the homotopy analysis method.

Liao [15] details the ham technique in solving nonlinear differential equations.
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2 Mathematical formulation

We consider a batch reactor operated isothermally with negligible volume
change due to reaction and with two elementary reactions

A+ B −→ C and C+ B −→ D. (1)

Examples of chemical processes that are governed by mechanism (1) include

potassium permanganate (A) + ethanol (B) → acetic acid (C), (2)

and then

acetic acid (C) + ethanol (B)→ ethyl acetate (D), (3)

and also the nitric acid oxidation of 2 octanol to 2 octanone and further oxi-
dation of 2 octanone to carboxylic acids. Application of the material balance
for the constant volume reactor gives the following differential equations

d[A]

dt
= −k1[A][B], (4)

d[B]

dt
= −k1[A][B] − k2[C][B], (5)

d[C]

dt
= k1[A][B] − k2[C][B], (6)

d[D]

dt
= k2[C][B], (7)

where k1 and k2 are reaction rate constants, and where [·] denotes concen-
tration. The initial concentrations are

[A](0) = A0 , [B](0) = B0 , [C](0) = 0 , [D](0) = 0 . (8)

For brevity, we introduce the following notation to denote the concentrations
of the reactants and products

y1(t) = [A](t), y2(t) = [B](t), y3(t) = [C](t), y4(t) = [D](t). (9)
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Equation (7) is uncoupled from system (4)–(6), thus the solution for [D](t)
can obtained by integration of (7) when the solutions for [B](t) and [C](t)
are known. Using the notation (9), equations (4)–(6) transform to

dy1(t)

dt
= −k1y1(t)y2(t), (10)

dy2(t)

dt
= −k1y1(t)y2(t) − k2y3(t)y2(t), (11)

dy3(t)

dt
= k1y1(t)y2(t) − k2y3(t)y2(t). (12)

The initial conditions become

y1(0) = A0 , y2(0) = B0 , y3(0) = 0 . (13)

In the next section equations (10)–(13) are solved using the homotopy anal-
ysis method (ham).

3 Homotopy analysis method solution

The concentrations for the reacting species A, B and C all tend to zero as
t→∞ . We therefore assume that

y1(t) =

+∞∑
j=1

aje
−jβt, y2(t) =

+∞∑
j=1

bje
−jβt, y3(t) =

+∞∑
j=1

cje
−jβt, (14)

where aj, bj and cj are coefficients. The parameter β is a convergence con-
trolling auxiliary parameter that is characteristic of the ham approach and
is carefully selected in such a way that the resulting ham solution conforms
to the rule of solution expression. These expressions provide us with the so-
called rule of solution expressions for solving the governing equations (10)–
(13). The β value is experimentally selected through trial and error for a
fixed value of the ham auxiliary parameter h̄. However, a fixed value of h̄
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in most cases will work for a reasonable non-zero values of β and still gives
similar agreement between the numerical solution and the ham solution.

To obtain solutions in the form of (14), we use the ham auxiliary linear
operators

Li [Φi(t;q)] =
∂Φi(t;q)

∂t
+ βΦi(t;q), (15)

which have the properties

Li
[
Cie

−βt
]
= 0 , (16)

where Ci (i = 1, 2, 3) are integral coefficients, q ∈ [0, 1] is the ham embedding
parameter, Φi(t;q) are unknown functions. The governing equations (10)–
(12) suggest that we define the following ham nonlinear operators:

N1 [Φi(t;q)] =
∂Φ1(t;q)

∂t
+ k1Φ1(t;q)Φ2(t;q), (17)

N2 [Φi(t;q)] =
∂Φ2(t;q)

∂t
+ k1Φ1(t;q)Φ2(t;q) + k2Φ2(t;q)Φ3(t;q), (18)

N3 [Φi(t;q)] =
∂Φ3(t;q)

∂t
− k1Φ1(t;q)Φ2(t;q) + k2Φ2(t;q)Φ3(t;q). (19)

Let h̄ be an auxiliary parameter and H(t) be an auxiliary function. Using the
embedding parameter q we construct the so called zeroth order deformation
equations as

(1− q)Li [Φi(t;q) − yi,0(t)] = h̄ qH(t)Ni [Φi(t;q)] (20)

subject to the conditions Φi(t, 0) = yi,0(t), where yi,0(t) are the initial
guesses of yi(t). Considering the initial conditions (13) and the expres-
sions (14) we choose the initial guesses

y1,0(t) = A0e
−βt, y2,0(t) = B0e

−βt, y3,0(t) = 0 . (21)

When q = 0 and q = 1 we have

Φi(t; 0) = yi,0(t), Φi(t; 1) = yi(t). (22)
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Thus, as q varies from 0 to 1, the solutions Φi(t;q) vary from the initial
guesses yi,0(t) to the exact solutions yi(t). Expanding Φi(t;q) using Taylor
series with respect to q, we obtain,

Φi(t;q) = Φi(t; 0) +

+∞∑
m=1

yi,m(t)q
m, (23)

where

yi,m(t) =
1

m!

∂mΦi

∂qm

∣∣∣∣
q=0

. (24)

Importantly, the ham approach gives us freedom to choose the auxiliary
parameter h̄ and function H(t). Assuming that h̄ and H(t) are carefully
selected so that series (23) converges at q = 1 , we have

yi(t) = yi,0(t) +

+∞∑
m=1

yi,m(t). (25)

The auxiliary function H(t) must be chosen in such a way that the resulting
solutions conform to the rule of solution expression (14).

To obtain the so called higher order deformation equations, we define the
vectors

~yi,n =
(
yi,0(t),yi,1(t),yi,2(t), . . . ,yi,n(t)

)
. (26)

Differentiating (20)m times with respect to q, then setting q = 0 , and finally
dividing the resulting equations by m!, we obtain the mth order deformation
equations

Li [yi,m(t) − χmyi,m−1(t)] = h̄ H(t)Ri,m(~yi,m−1(t)), (27)

subject to the initial conditions

yi,m(0) = 0 (28)
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where

R1,m = y ′1,m−1 + k1

m−1∑
j=0

y1,jy2,m−1−j, (29)

R2,m = y ′2,m−1 + k1

m−1∑
j=0

y1,jy2,m−1−j + k2

m−1∑
j=0

y2,jy3,m−1−j, (30)

R3,m = y ′3,m−1 − k1

m−1∑
j=0

y1,jy2,m−1−j + k2

m−1∑
j=0

y2,jy3,m−1−j. (31)

and

χm =

{
0, m 6 1,
1, m > 1.

(32)

Equations (27)–(32) , form a system of uncoupled first order differential
equations. Since the ham approach allows us to choose the convergence-
control auxiliary function H(t) and parameter h̄, we set H(t) = e−βt. This
choice of H(t) ensures that the resulting approximate solutions for yi(t) do
not violate the rule of solution (14). Setting m = 1 , substituting the initial
guesses yi,0(t) in (27)–(32) gives

y ′1,1 + βy1,1 = −h̄A0
[
βe−2βt + B0k1e

−3βt
]

, (33)

y ′2,1 + βy2,1 = −h̄B0
[
βe−2βt +A0k1e

−3βt
]

, (34)

y ′3,1 + βy3,1 = −h̄A0B0k1e
−3βt. (35)

Solving the above equations subject to the initial conditions yi,m(0) = 0 gives

y1,1(t) =
A0h̄

2β

[
B0k1e

−3βt + 2βe−2βt − (2β+ B0k1)e
−βt

]
, (36)

y2,1(t) =
B0h̄

2β

[
A0k1e

−3βt + 2βe−2βt − (2β+A0k1)e
−βt

]
, (37)

y3,1(t) =
A0B0k1h̄

2β

[
e−3βt − e−βt

]
. (38)
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The solutions for yi,m(t) (m > 2) can easily be found in a similar manner,
especially using symbolic computation software such as Maple, Mathematica,
Matlab and others.

3.1 Explicit series solution of the batch reaction
kinetics equations

By considering the first few solutions for yi,m(t) we obtain

y1,m =

2m+1∑
j=1

am,je
−βjt, y2,m =

2m+1∑
j=1

bm,je
−βjt, y3,m =

2m+1∑
j=1

cm,je
−βjt, (39)

where am,j, bm,j and cm,j are coefficients. Substituting the series (39) into
equations (27)–(32) we obtain the following recurrence formulas, for 2 6 j 6
2m+ 1 ,

am,j = χmχ2m−j+1am−1,j + h̄χ2m−j+4am−1,j−1 −
h̄k1χj−1λm,j−1

β(j− 1)
, (40)

bm,j = χmχ2m−j+1bm−1,j + h̄χ2m−j+4bm−1,j−1

−
h̄χj−1(k1λm,j−1 + k2γm,j−1)

β(j− 1)
, (41)

cm,j = χmχ2m−j+1cm−1,j + h̄χ2m−j+4cm−1,j−1

−
h̄χj−1(k2γm,j−1 − k1λm,j−1)

β(j− 1)
, (42)

where

λm,j =

m−1∑
j=0

min{i−1,2j+1}∑
r=max{1,i+2j−2n+1}

aj,rbm−1−j,i−r (43)

and

γm,j =

m−1∑
j=0

min{i−1,2j+1}∑
r=max{1,i+2j−2n+1}

bj,rcm−1−j,i−r . (44)
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From the initial conditions yi,m(0) = 0 , we obtain

a0,1 = A0 , b0,1 = B0 , and c0,1 = 0 . (45)

Also,

am,1 = −

2m+1∑
j=2

am,j, bm,1 = −

2m+1∑
j=2

bm,j, cm,1 = −

2m+1∑
j=2

cm,j. (46)

Using the above recurrence relations, we obtain, in succession, all the co-
efficients starting from the coefficients of the initial guesses (45) and the
solutions (36)–(38). This process results in the explicit series solution

y1(t) =

+∞∑
m=1

2m+1∑
j=1

am,je
−jβt,

y2(t) =

+∞∑
m=1

2m+1∑
j=1

bm,je
−jβt,

y3(t) =

+∞∑
m=1

2m+1∑
j=1

cm,je
−jβt. (47)

The mth order approximation is

y1(t) ≈
M∑
m=1

2m+1∑
j=1

am,je
−jβt,

y2(t) ≈
M∑
m=1

2m+1∑
j=1

bm,je
−jβt,

y3(t) ≈
M∑
m=1

2m+1∑
j=1

cm,je
−jβt. (48)
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4 Results and discussion

We present the ham approach results and compare them to numerical meth-
ods of solution. We used Maple to obtain successive solutions of A(t), B(t),
C(t) and D(t) for m > 1 . When applying the ham technique, the aux-
iliary parameter h̄ is critical in determining the convergence of the series.
The convergence rate and region of the ham solution series depends on the
careful selection of the auxiliary parameter h̄. As pointed out by Liao [15],
the admissible values of h̄ are chosen from the so called h̄-curve in which
some derivative property of the governing function, say y ′1(0) in the case of
the current problem, is considered to be an independent variable and plotted
against h̄. The valid region of h̄ where the series converges is the horizontal
segment of each h̄-curve. This study found that h̄ = −1/4 was appropriate
to be used. Using this choice of the auxiliary parameter the ham approxi-
mation at order m = 15 was found to converge to the numerical solution.
Figures 1–4 show comparisons of the ham analytical solutions with numer-
ical results obtained using Matlab initial value solvers. As can be clearly
observed in the figures, there is an excellent agreement between the two ap-
proaches for all values of time t. As expected, in Figure 1 we observe that
as the reaction rate k1 increases, concentration A(t) which is a reactant is
greatly reduced. It quickly diminishes for bigger values of the reaction rate.
In Figure 2 we observe that the concentration profiles of reactant B(t) are
reduced as values of k1 increase. The reduction of B(t) is not as great as
that of A(t) since reactant B(t) is also added to react with reactant C(t)
at the next phase of the batch reaction process. As expected, we observe in
Figure 3 that concentration C(t) increases as the reaction rate k1 increases
and reaches a peak before steadily decreases as it then reacts with B(t) to
produce concentrate D(t). The optimal time at which the concentration of
the product C(t) is maximum can be deduced from Figure 3 and then the
reactor quenched at this time. In Figure 4 we observe that as the reaction
rate k1 increases, the product concentration D(t) increases as expected.



4 Results and discussion E49

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.25k1 =

0.5

1.5

time t

C
o
n
ce
nt
ra
ti
o
n
,
A
(t
)

0.25k1 =

0.5

1.5

0.25k1 =

0.5

1.5

0.25k1 =

0.5

1.5

0.25k1 =

0.5

1.5

0.25k1 =

0.5

1.5

0.25k1 =

0.5

1.5

0.25k1 =

0.5

1.5

0.25k1 =

0.5

1.5

0.25k1 =

0.5

1.5

Figure 1: Comparison of the numerical solution of A(t) with the 15th order
ham approximate solution when h̄ = −0.25 , k2 = 0.5 , β = 0.15 . The solid
line denotes the numerical solution and the circles denote the ham solutions
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Figure 2: Comparison of the numerical solution of B(t) with the 15th order
ham approximate solution when h̄ = −0.25 , k2 = 0.5 , β = 0.15 . The solid
line denotes the numerical solution and the circles denote the ham solutions
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Figure 3: Comparison of the numerical solution of C(t) with the 15th order
ham approximate solution when h̄ = −0.25 , k2 = 0.5 , β = 0.15 . The solid
line denotes the numerical solution and the circles denote the ham solutions
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Figure 4: Comparison of the numerical solution of D(t) with the 15th order
ham approximate solution when h̄ = −0.25 , k2 = 0.5 , β = 0.15 . The solid
line denotes the numerical solution and the circles denote the ham solutions
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5 Conclusion

The homotopy analysis method is used to solve the nonlinear batch reaction
kinetic equations. Explicit series solutions describing the time evolution of
the underlying reaction kinetics equations are obtained. Our ham results
are found to be in excellent agreement with numerical results. This confirms
the power and significance of the ham approach as an effective technique for
solving nonlinear systems of equations. The value of 0.15 for β was arrived
at when the appropriate value of h̄ = −1/4 was used. We hope that the
ham approach presented here will spawn further interest in the analysis of
reaction kinetic models that fully characterize the reactions without making
assumptions of small or large concentration, initial or long term effects, quasi-
steady or steady state effects.
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