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Estimating the robustness of train plans for
single-line corridors with crossing loops
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Abstract

The movement of trains is often planned in advance to determine
where and when trains will cross each other, and to determine arrival
times for trains at their final destinations. However, random variations
to departure times and travel times mean that crosses do not always
occur at the planned locations and times, and excessive delays lead to
trains arriving late at their destinations. We define the robustness of a
train plan to be the expected reliability of that plan when the trains
are subjected to typical departure variations and variations in travel
speeds, and when standard procedures are used to recover from these
delays. Robustness can be estimated by simulating the operation of
the network for many different delays, but can we do a more direct
calculation? We calculate the distribution of arrival times for a train
with random departure and travel times that might be delayed by a
second train.
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1 Introduction

Australian interstate rail corridors are mainly single-track, with occasional
‘crossing loops’ that allow one train to pull off the main line so another train
can pass. The movements of trains on the rail corridors are planned in advance
to determine where and when trains will pass, and to determine reasonable
arrival times for the trains at their final destinations. In practice, however,
random variations to train departure times and train travel times mean that
crosses do not always occur at the planned locations and times. Excessive
delays can lead to trains arriving late at their destinations.

One of the key requirements of rail customers is reliability—trains should
arrive at their destinations on time. The reliability of the rail system is
typically expressed as the proportion of trains that arrive no later than their
planned arrival time.
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Reliability depends on planned departure times, planned section running
times, planned arrival times, actual departure times, actual section running
times, and how train controllers handle variations to planned train paths.

We define the robustness of a train plan to be the expected reliability of
that plan when the trains are subjected to typical departure variations and
variations in travel speeds, and when standard procedures are used to recover
from these delays. We are interested in developing a fast method for estimating
the robustness of train plans. This method could be used to assess manually
constructed train plans or as part of the objective function in automated
train scheduling tools.

To estimate robustness, we need to know planned train departure times,
planned section running times, planned arrival times, the expected distribution
of departure times, the expected distribution of section running times, and
how train controllers will handle variations to train paths.

There is a moderate body of literature relating to the calculation of train
delays. Murali et al. [2] overview analytical and simulation models, of varying
complexity, to estimate delay in rail networks.

The arrival project1, funded by the European Commission, is develop-
ing robust optimisation methods to improve the reliability of rail transport.
Cicerone et al. [1] gave a good overview. The train timetabling problem is gen-
erally set in the context of European passenger rail networks, and assumes that
interactions between trains occurs at specified locations (typically stations).

We, like many, use simulation to predict the movement of trains along a
single line corridor. In our case we simulate typical Australian long haul
corridors where there are significant delays in train departure times and where
crossing locations are not important. We use these simulations to predict the
distribution of arrival times for trains. We then begin to formulate a simple
method, suitable for Australian long haul rail networks, for calculating the
distribution of arrival times.

1http://arrival.cti.gr

http://arrival.cti.gr
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2 Modelling the problem

We restrict our attention to a single-line corridor with n intermediate crossing
loops. Distance along the corridor is x ∈ [0,X]. Train journeys start and
finish at x0 = 0 and at xn+1 = X . Trains can pass each other only at crossing
loop locations x0 < x1 < x2 < · · · < xn < xn+1 . Loops are typically placed so
that running times are approximately equal between each pair of adjacent
loops. Table 1 shows that the mean section running time on the Sydney to
Brisbane corridor is 12–13 minutes, with a standard deviation of two minutes.

The set of trains is T = T+ ∪ T− where T+ is the set of trains travelling from
x = 0 to x = X , and T− is the set of trains travelling from x = X to x = 0 .
The information specified for each train i is

• di, the planned departure time of train i from the origin;

• tij, the planned travel time for train i between xj and xj+1;

• ai, the planned arrival time of train i at the destination;

• ∆i, the direction indicator: ∆i = 1 if train i travels from 0 to X, and
∆i = −1 if train i travels from X to 0;

• pi, the priority of train i, a higher value indicates a higher priority.

At any instant there can be at most one train on each interval (xj, xj+1) and
at most two trains at each crossing location x1, x2, . . . , xn. The corridor has
unlimited capacity at x0 and xn+1.

We do not allow a fast train to overtake a slower train travelling in the same
direction.

Figure 1 is an example train graph that shows the movement of trains over a
two day period. The horizontal axis indicates time. The vertical axis indicates
location. The horizontal lines correspond to crossing loops. Notice that trains
cross only at crossing loops, and that one of the trains involved in each cross
is delayed.
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Figure 1: Example train graph.

For a given set of random departure and travel time perturbations, and a
given recovery procedure for deciding where trains should cross, we wish to
calculate the expected proportion of trains that will arrive no later than the
planned arrival times.

3 Modelling delays

To calculate robustness, we need to model the delays that occur to each train
on entering the network, and on each section of its journey. The train planning
process assumes a nominal running time for each train on each journey section.
However, the running times of a particular train could vary significantly from
the assumed running times since there are significant variations in train length,
train mass and the types and number of locomotives used to haul trains.
Nominal section running times should be selected so that most trains require
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Figure 2: Cumulative distributions of departure delays for three different
freight corridors.

less time, but some trains may take longer than the nominal time. Temporary
speed restrictions introduce further delays.

Figure 2 shows the cumulative distribution of departure delays for trains
departing Port Waratah (blue), Sydney (green) and Brisbane (red) on the
main freight corridor between Sydney and Brisbane.

Figure 3 shows measured running times relative to the planned running times
for one class of train travelling from Sydney to Brisbane. The vertical axis
represents earliness; the horizontal axis indicates distance (increasing across
the graph).

Table 1 shows some statistics for two classes of trains travelling in each of the
two directions between Sydney and Brisbane. We use data such as this to
construct distributions of actual departure times and running times on each
section.
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Table 1: Statistics of section running times, all in minutes.
SB1 BS1 SB2 BS2

mean section running time 12.4 12.4 13.0 12.8
standard deviation 2.0 2.0 2.1 2.5

mean midpoint cumulative time 300.2 350.1 327.6 387.1
standard deviation 7.5 13.3 11.4 13.5

mean finish cumulative time 642.4 645.8 703.5 702.1
standard deviation 14.0 16.8 18.1 22.2

4 Recovery procedure

When trains are not running according to the plan, the train controller must
re-calculate where each cross should occur. We assume that crossing decisions
are based on ‘natural crossing locations’; that is, locations where the opposing
trains would meet if they did not have to pass at crossing loops. The crossing
location for a pair of trains is calculated as follows.

• If the two trains have the same priority, the cross should occur at the
loop closest to the natural crossing location. The portion of train graph
on the left of Figure 4 shows a cross at the upper crossing loop, which
is closest to the natural crossing location. This scheme minimises the
local delay.

• If the two trains have different priority, the cross should occur at the
crossing loop immediately prior to the natural crossing location on the
path of the low priority train. The portion of train graph on the right
of Figure 4 shows a cross where the down (red) train has priority.

This is similar to the recovery scheme used by train controllers at the Aus-
tralian Rail Track Corporation.

Given a random departure time for each train, random section running times
for each train, the scheduled arrival time for each train, and the locations of
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Figure 4: Crosses for trains with equal priority (left) and where the
down (red) train has priority (right).

crossing loops, we use the recovery rules to simulate the movement of trains
across the corridor, and hence the lateness of each train.

5 Monte Carlo estimation of arrival time

distributions

The robustness of the train plan can be estimated by simulating the operation
of the network for many different perturbation instances, and measuring the
proportion of late trains.

Figure 5 shows the distribution of arrival times for the trains depicted in
Figure 1 when departure times are selected from a normal distribution with a
standard deviation of 10 minutes, and section running times are based on an
average running speed of 80 km/h with a standard deviation of 2 km/h. We
ran 1000 simulations, then set the required arrival time for each train to the
95th percentile value of the observed arrival times so that each train service
will have a robustness of 95%. The distributions of arrival times shown in
Figure 5 have been shifted so that they show arrival time relative to the
95th percentile arrival time.
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Figure 5: Cumulative distributions of arrival times from a Monte Carlo
simulation.

6 A more efficient calculation?

Can we estimate robustness without simulating, many times, the detailed
movement of trains on the network? Can we predict the distribution of arrival
times for each train based on the number of crosses it will have and the
expected delay at each cross?

First we show how to estimate the delay to each of the trains involved at a
cross without knowing details such as the natural crossing location and the
locations of crossing loops.

Trains with equal priority cross at the loop closest to the natural crossing
location. Let d be the distance between the natural crossing location and the
closest crossing loop. Suppose the mean distance between loops is δ. As the
natural crossing location varies between one loop and the next, the distance d
varies from 0 to δ/2 and back to 0 again. The expected value for d is δ/4.
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Let the train speeds be v1 and v2. If train 1 is the first to arrive at the
crossing loop, then the delay to train 1 is d/v1+d/v2 and the delay to train 2
is zero. Alternatively, if train 2 is first to arrive, then the delay to train 2
is d/v1 + d/v2 and the delay to train 2 is zero. Since each train is equally
likely to be the first to arrive at the crossing loop, the expected delay to each
train is

d1 =
δ

8

(
1

v1
+
1

v2

)
.

The total delay is 2d1. Now consider the case where train 1 has priority over
train 2. In this case, the crossing location is selected so that train 2 arrives
at the cross first and waits for train 1, which has zero delay. The expected
distance d to the crossing loop is δ/2, and the delay to train 2 is

d2 =
δ

2

(
1

v1
+
1

v2

)
.

The total delay in this case is d2, since only train 2 is delayed.

The total delay when one train has priority is is double the total delay when
the trains have the same priority.

We now look at how a single cross may affect the arrival time of a train.
Consider the incoming (blue) train in Figure 6. The left diagram shows the
incoming train arriving at its destination at time a before the outgoing (red)
train departs at time d. If the incoming train does not cross the outgoing train,
calculating the distribution of arrival times is straightforward. However, some
perturbations applied to the incoming train and to the outgoing train will
cause the two trains to cross, introducing further delay to the incoming train.
The incoming train now arrives at time a > u , where u is the unimpeded
arrival time. This is shown in the right diagram.

Let U be the unimpeded arrival time of the incoming train, D be the departure
time of the outgoing train and A be the actual arrival time of the incoming
train. These are random variables. For an instance (u,d) of (U,D), the
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a=u d d u a

Figure 6: Unimpeded and actual arrival times.

actual arrival time

a =

{
u, u 6 d,

u+ γ, d < u,

where γ is the delay to the incoming train.

The density of unimpeded arrival times U and departure times D are depicted
in the left portion of Figure 7. The fuzzy blob indicates the density of the
joint distribution. For instances (u,d) with u > d , the incoming train will
be delayed.

There are two ways that the incoming train may arrive at time t: either the
unimpeded arrival time is t; or the unimpeded arrival time is t− γ and the
train is delayed by duration γ.

The probability that the incoming train arrives before time t is

Pr[A < t] =

∫ t−γ
−∞
∫∞
−∞ fU,D(u, δ)dδdu+

∫ t
t−γ

∫∞
u

fU,D(u, δ)dδdu ,

where fU,D is the density of the joint probability distribution for (U,D). This
calculation is depicted in the right side of Figure 7. The probability density
function for A is

fA(t) = FD(t− γ)fU(t− γ) + (1− FD(t)) fU(t),

where FD is the cumulative distribution function for D.



7 Summary C780

U

D

u = d

delayed

not delayed

U

D

u = dt

P[A < t]

t

t - γ

Figure 7: The joint distribution of unimpeded arrival times and departure
times.

Figure 8 shows the probability density function for A when U is normal with
mean 300 seconds and standard deviation 80 seconds, and D is normal with
mean 350 seconds and standard deviation 50 seconds. When the incoming
train is delayed, the delay is fixed at 300 seconds.

So far we have only considered the impact of a single cross. Further work
is required to generalise this method to account for multiple crosses and to
develop fast numerical procedures for estimating the distribution of arrival
times of each train.

7 Summary

Given distributions of train departure times and section running times, and
a specified procedure from recovering from delays, simulation and Monte
Carlo methods predict the proportion of trains that will arrive on time, or
alternatively to calculate target arrival times for which a given proportion of
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Figure 8: Probability density functions for U, D and A.
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trains will arrive on time. We have also shown how we can estimate crossing
delays and the distribution of arrival times for a pair of opposing trains. One
interesting result is that having trains with different priorities doubles the
expected total delay at a cross.

Further work is required to model the distributions of departure times and
section running times, and to generalise the calculation of arrival distributions
to networks with many trains and many potential crosses. The resulting
calculations can be used to assess the impact on robustness of different
timetables and different recovery procedures.
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