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Abstract

The human cochlea is a fascinating transduction organ that illus-
trates the ingenious way in which engineering problems are solved in
nature. A healthy cochlea has a dynamic range in the order of 120 dB;
that is, the difference between the roar of the engines of a Boeing 747
and the faintest whisper. We discuss the recent assertion that the
cochlea is governed by the dynamics of a Hopf bifurcation. In our
cochlea model we discretise the basilar membrane into resonant sec-
tions with logarithmically decreasing characteristic frequencies. We
show that the observed active behaviour of the cochlea can be mod-
elled as a change in the quality factor of the individual resonant sec-
tions in a discretised model, and that this has dynamics which embody
the Hopf bifurcation.
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1 Introduction

The cochlea is a small, bony organ in the inner ear which transduces mechan-
ical energy into electrical signals. It has been the object of neuro-scientific
research for almost 150 years. The interest is mainly due to its huge dynamic
range (≈ 120dB [9]) and ability to adapt to a wide variety of listening envi-
ronments. The existence of an active cochlear amplifier is well accepted, and
the active elements are generally agreed to be the outer hair cells (ohcs).
In 2000, Egúıluz et al. [2] proposed that there was strong evidence that the
cochlear amplifier has the dynamical characteristics of a Hopf bifurcation.
Camalet et al. [1] made an almost simultaneous conjecture, specifying that
the Hopf bifurcation was a result of self-tuned critical oscillations of the hair
cells. Kern and Stoop [6, 7] subsequently developed a coupled structure
that suggests that sections of the cochlea cannot be considered in isolation,
as their dynamics affect the propagation of sound through the cochlea as a
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whole. Magnasco [8] developed an alternative coupled model which shows
somewhat different results.

We present a two dimensional (2D) model of the cochlea which includes
supercritically stable amplification (a Hopf bifurcation) in a physiologically
realistic way. We show that the nonlinearities predicted in other models [1,
2, 6, 7, 8] are present in this physical system, and that successful operation
in the supercritical regime is feasible, thereby confirming that a cochlea with
physiologically plausible coupling can operate in this fashion.

2 Characteristics of the active cochlea and

the Hopf bifurcation

2.1 Active, nonlinear characteristics of the cochlea

In our discussions on the biological cochlea we use the terminology active to
emphasise the fact that the cochlea is a dynamic organ, expending energy to
enhance the received sound. Figure 1 shows the simplified, uncoiled cochlea.
Here we see both the oval window, which is connected to the stapes, and
the round window, which is a membrane that allows the pressure within the
cochlea duct to be equalised. The fluid within the cochlea is assumed to be
incompressible. When the oval window moves, the basilar membrane (bm) is
deflected and the round window moves in the opposite direction to the initial
movement in the oval window.

The bm changes in width and elasticity from narrow and stiff at the base to
wide and flexible at the apex. These changes in the physical characteristics
of the bm assist to separate an input signal into its frequency components.
At the base of the cochlea the physical characteristics of the bm are such that
it responds better (that is, greater movement is produced) to high frequency
stimuli whereas the apex responds better to low frequency stimuli. The
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Figure 1: The uncoiled cochlea.

characteristic frequency at a particular place along the bm is said to be the
frequency that produces the greatest deflection at that place.

Figure 2 shows the nonlinear and active characteristics measured from the
chinchilla cochlea. Figure 2(a) plots frequency versus bm velocity (a measure
of frequency response at a particular place in the cochlea). For large input
signals the frequency response is highly damped. For small input signals the
frequency response is more highly tuned.

Figure 2(b) shows the gain for each input intensity. This figure illustrates
the nonlinear nature of the active gain. Here we see that for small input
intensities the gain is much larger than for large input intensities. This
phenomenon is called large-signal compression.
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Figure 2: Frequency response at a particular place along the basilar mem-
brane in a chinchilla cochlea where the characteristic frequency is 9 kHz [10].
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2.2 The Hopf bifurcation

A Hopf bifurcation is a critical point in a nonlinear system where there is a
transition between a stable equilibrium point and a limit cycle. A feature
of the (supercritical) Hopf bifurcation is that there is a smooth transition
between this stable equilibrium and the limit cycle and back again. This is
an important feature for a biological system where there is sure to be mis-
match and noise that may otherwise (for example, if the Hopf bifurcation is
subcritical) push it into an unstable region without the ability to re-establish
its correct operating point. A differential equation that embodies the Hopf
bifurcation for a single variable is [2]

dz

dt
= (µ+ iω0)z− z

3 + Feiωt, (1)

where z(t) is the output signal and a complex variable of time of the form
z(t) = x(t)+ iy(t), µ is the control parameter (set-point), ω0 is the resonant
frequency and Feiωt is a forcing function provided by some external force.
Note that the two dimensions (variables) used to describe the normal form
of the Hopf bifurcation are encompassed by the real and imaginary parts of z.

In (1) when the forcing function is excluded the control parameter µ is varied
to obtain stable (µ < 0), critical (µ = 0) and unstable (limit cycle) (µ > 0)
solutions. When operating at the bifurcation point (µ = 0) the system is
said to be supercritically stable.

When the forcing function is included, the dynamics of the system become
significantly more complicated. Egúıluz et al. [2] discusses the full range of
entrainment behaviour that can occur. When the system is supercritically
stable, and it is driven at ω0, the response is nonlinear with a high gain
for small forcings and smaller gains for larger forcings. If it is driven at
ω = ω0 + ∆ω , ∆ω 6= 0 , then the response is approximately linear for
sufficiently small input.

Therefore the cubic term in (1) introduces a compressive nonlinearity at reso-
nance. This compressive nonlinearity contributes to the damped response for
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large inputs and highly tuned response for small inputs. Hence, equation (1)
possesses important dynamics observed in the mammalian cochlea.

3 The cochlea model

Our active cochlea model is based on the passive models developed by Frag-
niere [3] and van Schaik et al. [13]. It consists of a resistive network simulat-
ing a fluid region and resonators modelling the basilar membrane behaviour.
The fluid is assumed to be inviscid, incompressible and irrotational. Under
these conditions, Fragniere [3] showed that it can be modelled by a resistive
network that is equivalent to a finite difference approximation to the Laplace
equation

∂2p(x,y)

∂x2
+
∂2p(x,y)

∂y2
= 0 , (2)

where p(x,y) is the fluid pressure at the location (x,y), represented as a
voltage in the network. Newton’s second law provides a relationship between
pressure and the x and y acceleration in the fluid

∂p(x,y)

∂x
= ρ(x,y)ax(x,y),

∂p(x,y)

∂y
= ρ(x,y)ay(x,y). (3)

Either the pressure or its normal gradient (proportional to the acceleration)
must be specified at each location on the boundary of the fluid region. The
bm boundary condition is described below and the oval window, which serves
as the input to the cochlea, is represented by the y-axis (that is x = 0)
boundary. The helicotrema is modelled by a pressure of zero at the apex and
the remaining boundaries represent the wall of the cochlea where acceleration
is assumed to be zero.

Our 2D cochlea model is illustrated in Figure 3. The resonators are shown
along the bm which is represented by the x-axis (that is y = 0). The char-
acteristic frequency of the resonators logarithmically decreases from base to
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Figure 3: The 2D cochlea model.

apex as in the real cochlea. The resonators are coupled together through
the cochlea fluid which is discretised into m × n sections. Resistor values,
Rx(i, j) and Ry(i, j), depend on ρ and the size of each section.

A simplifed equation describing the motion of bm at a point (x, 0) on the
boundary of the fluid is

∆pBM(x)w(x)dx = aBM(x)

{
m(x)dx+

h(x)

s
dx+

k(x)

s2
dx

}
, (4)

where ∆pBM(x) = 2p(x, 0) is the pressure difference across the bm. The
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factor of two accounts for the fact that only one scalar is modelled. w(x) is
the width of the bm, aBM(x) = −a(x, 0) is the acceleration of the bm, m(x) is
the mass of the bm, h(x) is the damping associated with the bm, and k(x) is
the stiffness of the bm. In the passive model the width w, mass m, and
damping h, of the bm are assumed to be constant for the entire length of
the bm. The stiffness term, k, is modelled by the logarithmically decreasing
characteristic frequency along the length of the bm.

Equation (4) can be discretised into a set of individual resonators at given
locations i along the bm. The relationship between pressure and acceleration
for a single resonator is

aBMi =
s2

s2mi + shi + ki
∆pBMi , (5)

where s is a complex variable in the Laplace domain. Here we assume that
the width, w(x), is constant in a discrete segment, ∆x, of the bm. Thus, for
simplicity both of these terms are omitted.

The sensing cells in the cochlea, the inner hair cells (ihcs), transduce the
bm velocity into a neural signal. bm velocity is thus taken as the output for
each resonator. Integrating (5) we obtain

aBMi

s
= vBMi =

s

s2mi + shi + ki
∆pBMi , (6)

where vBMi is the velocity at a particular place, i, along the bm. Equation (6)
is proportional to the typical band-pass filter response given in (7), where Γ is
the filter output (analogous to bm velocity, aBMi), θ is the filter input (anal-
ogous to the pressure change across the bm, ∆pBMi), τ is the time constant
of the filter and Q is the quality factor

Γ =

(
sτ

s2τ2 + sτ/Q+ 1

)
θ. (7)

By observing the behaviour of the bm (see Figure 2) we see that the tuning of
the response of the bm, that is the quality factor Q of the bm at a particular
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Figure 4: bm resonant system with positive feedback.

place, is higher for small inputs than for large inputs. This observation is
incorporated into our cochlea model by varying theQ of each resonator based
on the intensity of the input signal. Looking at (6) and (7), Q is equivalent to
the inverse of the damping term h. Thus, in the 2D active cochlea model we
no longer consider the effective damping to be constant but rather dependent
on bm velocity.

The adaptation of the Q for each resonator based on its input signal is
achieved via a local feedback loop. Figure 4 illustrates the feedback loop
for the bm resonant system. Here, A is the feedback gain term, ω0 is the
resonant frequency, equivalent to the inverse of the time constant τ, and

ζ =
1+AQ

Q
. (8)

This resonant system can be described by

Γ =

(
ω0s

s2 + sω0ζ+ω2
0

)
(θ+AΓ), (9)

which is equivalent to (7). From (8) and (9) changing the feedback term A

is equivalent to changing the Q of the resonant system.

A feedback loop that adds the weighted energy of its output signal to its
input, such as that shown in Figure 4, possesses the dynamical properties of
a Hopf bifurcation [12]. This can be shown by rewriting (9) in differential
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form to obtain

θ+AΓ =
1

ω0

dΓ

dt
+ ζΓ +

∫
ω0Γ dt . (10)

Select
A = g

(
µ− |Γ |

2 ), (11)

where g is a constant gain factor and µ is the system set-point, we re-
write (10) as

1

ω0

dΓ

dt
+ (ζ− gµ)Γ +

∫
ω0Γ dt+ gΓ |Γ |

2
− θ = 0 , (12)

so that it is in the form of a first order system that displays the dynamical
properties of the Hopf bifurcation [11]. In (12) we are on the critical point,
and hence, supercritically stable when ζ = gµ . Therefore, using this model
we are able to tune the resonators to stable, critical and unstable operating
points simply by varying µ.

4 Results

The 2D cochlea model outlined in the previous section was implemented
in several analogue vlsi hardware models. The hardware models included
between 12 and 83 resonant sections. Further details of the hardware im-
plementation are recorded elsewhere [4, 5]. Note that in the figures below
“dBV” refers to decibels relative to one Volt.

Figure 5 shows the frequency response (a) and the transient response (b) of
the single resonator described by (9) and (12). Here we see the change in
gain and selectivity (Q) as the input signal intensity varies. In Figure 5(b)
the µ is set very close to the Hopf bifurcation and as such the gain between
the input and the output is very large.

Figure 6 shows the frequency response (a) and the gain (b) of a single res-
onator at a particular place when the entire cochlea model is tested. Here we
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Figure 5: Frequency response (a) and transient response (b) of a single
resonator when the input signal intensity is varied.
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Figure 6: Frequency response (a) and the gain (b) of a single resonator at
a particular place in the cochlea model.
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see the characteristic steep slope after resonance as seen in Figure 2. We also
see the shift in resonant frequency from low to high as the input signal in-
tensity decreases. Hardware limitations prevented us from covering the same
dynamic range as shown in Figure 2; however, we showed that the model
produces similar responses to the measured cochlea [4, 5].

5 Conclusions

We have presented a mathematical model of the cochlea which exhibits the
same dynamical behaviour as the measured cochlea. The model was de-
vised through qualitative analysis of the results of the measured cochlea.
Mathematical analysis of the model shows that it possesses the dynamical
properties of a Hopf bifurcation. This model has subsequently been used to
gain greater insight into the mechanisms of hearing.
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