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Large eddy simulation of a stenosed artery
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Abstract

A large eddy simulation is conducted of a 50% stenosed artery.
The inlet boundary condition is a physiologically accurate pulsatile
flow, representative of that found in a femoral artery. The transient,
three dimensional results show the non-axisymmetric nature of the
flow field; high values of wall shear stress, oscillatory in both space
and time are also observed. The identification of such fluid dynamic
quantities within a stenosed vessel is important in understanding the
likely causes and ongoing effects on the integrity of the vessel.
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1 Introduction

Arterial stenosis refers to a condition in which a narrowing of the artery exists
which causes a disruption in the blood flow, and in severe stenosis, turbu-
lent flow. The analysis of fluid dynamic quantities such as velocity profiles,
turbulent quantities and wall shear stress (wss) are important in gaining
an understanding of the mechanisms that may contribute to conditions such
as atherosclerosis, which causes arterial stenosis, and also the effects on the
vessel from the changed flow conditions downstream of a stenosis. In vivo
measurement of these data is difficult; computational simulation is proving
to be a useful methodology for gaining such information. While regions of
both high and low shear stress have been highlighted as potential atheroscle-
rotic development sites, how rapidly the wss varies in space and time is of
most significance. Fluid shear stresses in healthy large arteries are typically
1–2Pa [1]; however, shear stresses may be as large as 200Pa in the narrowed
throat region of a severely stenosed artery [2].

In stenosed vessel flows, turbulence is likely to occur downstream of the
stenosis, even for moderate Reynolds numbers [1]. Turbulent flow in a blood
vessel has considerable implications for the integrity of the vessel, particularly
the effect on the wall shear stress.

Pulsatile stenotic flows have been the focus of a number of numerical simu-
lations in the past decade, ranging from standard Reynolds Averaged Navier
Stokes (rans) solutions [3] to computationally intensive Direct Numerical
Simulation (dns) models [4]. Not unexpectedly, given the large computa-
tional resources required, the dns models are generally channels, represent-
ing a simplified stenosed artery flow. rans cfd solutions utilised a range of
two equation models for the turbulence closure, with the k-ω model com-
paring well [3, 5] to the frequently cited experimental results of Giddens and
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Figure 1: Femoral profile

colleagues [6]. These in vitro experiments, using Laser Doppler Anemometry
and flow visualization produced useful data relating to the post-stenotic flow
behaviour for vessels with a range of stenoses. Large Eddy Simulation (les)
models [11], providing a middle ground in complexity and computational re-
sources, are proving to be useful in determining fine details of flow structures
for pulsatile arterial stenosis flows. For a stenosed channel flow [7] the les
sub-grid model can dissipate around 23% of the energy of the flow, mostly
in the post-stenotic region, justifying the use of this more complex model for
this type of problem.

A computational analysis is conducted of a rigid, symmetric artery with
a 50% stenosis, for a physiological pulsatile profile, representative of the
femoral artery [8]. The profile, shown in Figure 1, represents one cycle and is
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given in terms of axial velocity distribution over time, as this is the form in
which the profile is specified in the computational model. At the beginning
of the cycle (t = 0 s), the fluid travels forward at approximately 0.2m s−1

and quickly increases axial velocity to the peak systole value of 1.16m s−1 at
t = 0.08 s. After this peak value is reached, the axial velocity drops sharply
and enters the diastole stage of the cycle, with a peak (reverse direction of
flow) axial velocity of 0.4m s−1. From this point, a gradual increase (with
two smaller drops in magnitude) is found until the end of the cycle at 0.6 s.

Results are given in the form of contours of axial velocity, vorticity magnitude
and wss. The three dimensionality of the flow field is apparent, as is the
strong downstream core formed at peak systole. Recirculation zones and the
subsequent breakup of the shear layers indicate regions of high wss.

2 Methodology

The modelled geometry, representing a simplified stenosed artery, consists
of a D = 10mm diameter axisymmetric cylindrical domain, with a 50%
occluded axisymmetric stenosis, with an extent of 2D from start to end. The
modelled region extends 5D before the stenosis begins, and extends 15D
beyond the stenosis. The effect of the extent of the domain was not studied
during the validation and verification process due to computational resource
limitations; however, the results show that the domain should be larger.
The flow is assumed to be incompressible, homogenous and Newtonian with
the fluid properties approximating blood (density of 1.06 × 103 kgm−3 and
viscosity of 3.71 × 10−3 m2s−1). Newtonian flow in vessels of this size has
been shown to be a reasonable assumption [9]. The vessel walls are assumed
rigid. Distances quoted as ‘downstream’ or ‘upstream’ of the stenosis are
taken from the end of the stenosis (not the centre).

The pulsatile profile is representative of the profile found in a femoral artery.
Figure 1 gives the inlet velocity profile as modelled and is of particular in-
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terest given the significant flow reversal during the diastolic phase. The inlet
conditions were set as plug flow (uniform across the inlet); a parabolic, fully
developed profile is not appropriate for velocity conditions that may expe-
rience flow reversal. All vessel walls are set to non-slip boundaries and the
downstream outlet is an open boundary that allows both forward and reverse
flow.

A fully structured mesh was produced, with mild bias towards the walls to
enable capture of boundary layer development and also mild bias from both
the inlet and outlet towards the region of the stenosis. The mesh consisted
of 15 blocks of structured hexahedral cells, giving a total number of cells of
5.7 million. A timestep of 0.001 s was used, resulting in a Courant number of
approximately 0.2, and the residual error level within each timestep, for each
equation, was 10−5. The Reynolds number was calculated based on stenosis
diameter and peak inlet velocity, giving Re = 1600 . The computational
models were run in parallel across 32 nodes on an sgi Altix 4700 64 bit shared
memory machine, with 128 Dual-Core 1.6GHz cpus and 1Tbyte ram. All
cases were run with double precision accuracy.

The filtered Navier–Stokes equations were solved using a commercial finite
volume code, Fluent 6.3. The sub-grid scale stresses are modelled using the
dynamic Smagorinsky–Lilly model via the Boussinesq hypothesis [10]. In
this model, Smagorinsky’s eddy viscosity formulation is used; however, the
square of the Smagorinsky constant is replaced by a coefficient. For a case
of boundary layer flow, Geurts [11] finds that the dynamic model produces
excellent accuracy with a significant saving of computational effort, when
compared to dns results.

The initial condition was set from a steady state rans k-ε solution, for a
velocity equal to the pulsatile velocity at t = 0 . Momentum equations were
solved by central differencing and pressure-velocity coupling achieved with
the piso scheme. Six full pulsatile cycles were completed before any data
was collected; however, the effect of further cycles was not investigated and
it is possible the flow may not have fully settled by this stage.
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3 Results and discussion

Axial velocity contours along a midplane are given in Figure 2. The peak
velocity occurring in the region is 4.5m s−1 and is found at the time of peak
systole. Contour plots are given at six points in the cycle (each 0.1 s) in order
to capture the transient nature of the flow. At t = 0.1 s, the cycle is near
peak systole and a reasonably uniform flow observed, with a central core of
high speed fluid moving downstream of the stenosis, surrounded by sections
of slow reverse (negative x direction) flow. The core is well contained and the
shear layers do not thicken considerably in the region shown. At t = 0.2 s,
the cycle has reached peak diastole, and most of the fluid is moving in the
reverse direction. Again, a core of fast moving fluid is observed (now on the
left side of the stenosis).

Regions of forward moving fluid are seen on either side of the core and down-
stream of the stenosis, where non-axisymmetric flow is also apparent. At
t = 0.3 s, the fluid is again moving in the forward direction but at a rela-
tively slow velocity and this is reflected in the contour plot where a slightly
faster region of flow is seen at the stenosis. A small amount of reversed flow
remains upstream of the stenosis, where the fast moving core existed at the
earlier time step. Moving forward to t = 0.4 s, the fluid has recovered from
the diastole part of the cycle and the only reversed sections of flow are seen
after the stenosis, on either side of the core flow. For the last section of the
cycle (t = 0.5 s and t = 0.6 s) the velocity stays fairly constant with a faster
central core of around 1m s−1 which shows some degree of three dimensional-
ity, surrounded by slower (reversed for at t = 0.5 s) regions and very uniform
upstream flow.

A representation of the full flow field is given in Figure 3, in which the
distribution of axial velocity over time (x-axis) and distance (y-axis) is given.
The image is constructed from data collected at every timestep, on a line
along the centre line of the vessel. The centre of the stenosis is located at
y = 0.06m and the effect of this geometry clearly seen in the figure. The red



3 Results and discussion C192

(a) t = 0.1 s

(b) t = 0.2 s

(c) t = 0.3 s

(d) t = 0.4 s

(e) t = 0.5 s

(f) t = 0.6 s

Figure 2: Axial Velocity (m s−1) on mid-plane over the cycle.
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Figure 3: Spatio-temporal distribution of axial velocity (scale as previous)

region in the lower left of the image represents the high speed peak systole
section of the cycle and the disturbance to the flow is seen to be far reaching,
both spatially and temporally. As the data collected is from cycle seven,
the effects of the previous flow cycle are seen at the left side of the image.
However, at the upper region of the figure the flow disturbance propagates to
the downstream boundary, indicating that this boundary may not be located
at a far enough distance downstream and further work is being conducted to
assess this. Upstream disturbances close to the boundary appear minimal.

Figure 4 shows more detail of these features. It shows contours of vorticity
magnitude on the same plane at the same points in the cycle. The defined
shear layer separating the central core of fluid is clearly seen for t = 0.1 s,
with the shear layer staying well defined until around 2D downstream of the
stenosis when some breakup in the outer region can be noted. Vorticity levels
increase in the outer region of the vessel as the shear layer breaks up.

At t = 0.2 s (peak diastole) high values of vorticity occur upstream of the
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stenosis, and there is evidence of disturbed flow downstream. The asym-
metric and well defined nature of the upstream vortex ring is clearly seen
in this image. In the next image, little vorticity is found in the fluid as the
velocity has slowed, the upstream vortex ring has dissipated and the down-
stream flow is still to be established. By t = 0.4 s this downstream flow is
well established and as in the initial image a clear shear layer occurs. How-
ever, due to the slower velocity at this time in the cycle compared to that
found at t = 0.1 s, the breakup occurs much earlier and the region outside
the inner core experiences a greater level of vorticity and disturbed flow not
far beyond the stenosis. In the later two images (t = 0.5 s and t = 0.6 s) the
shear layer continues to die down and vorticity gradually dissipates as the
fluid velocity slows.

Figure 5 shows a representation of the full flow field for vorticity and for
subgrid scale (sgs) turbulent viscosity (an indication of the turbulence in
the flow field as it links the subgrid scale stresses to the gradients of filtered
velocity). The distributions over time (x axis) and distance (y axis) are
given, as for Figure 3.

As expected, regions of high vorticity are seen near the time of peak systole,
and some less high values found for the peak diastole region. The breakdown
of the systole core shear layer is apparent in the high values of vorticity seen
downstream (higher on the y axis) of the stenosis. In comparison to the axial
velocity field, the vorticity is more contained within the high value regions
and does not extend as far either temporally or spatially. In contrast, the
sgs viscosity distribution shows disturbances to propagate well within the
domain, easily reaching the downstream extent of the model. This image
shows that the modelled domain is required to be significantly longer. The
effect of biasing the size of the cells is also apparent; the image appears
somewhat pixelated near the downstream boundary and this is very likely to
be a result of the larger cell size in this region.

Finally, wall shear stress (wss) is considered, by plotting a contour of wss
along a plane of angular distance around the diameter (in the y-direction)
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(a) t = 0.1 s

(b) t = 0.2 s

(c) t = 0.3 s

(d) t = 0.4 s

(e) t = 0.5 s

(f) t = 0.6 s

Figure 4: Vorticity Magnitude(s−1) on mid-plane over the cycle.
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(a) vorticity

(b) subgrid scale viscosity

Figure 5: Spatio-temporal distribution of vorticity and subgrid scale vis-
cosity
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(a) t = 0.1 s (b) t = 0.2 s

(c) t = 0.3 s (d) t = 0.4 s

(e) t = 0.5 s (f) t = 0.6 s

Figure 6: Wall Shear Stress (Pa) over the cycle.
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and vessel length (in the x-direction). This allows the vessel wall to be
‘opened out’ (Figure 6). The location of the stenosis is shown on each image.
Highest levels of wss are found when the fluid is at the peak systole stage
of the cycle, driving the greatest amount of fluid through the small region of
the stenosis. Consequently, values of wss of 150Pa are found on the walls
within the stenosis. Also in the downstream region (approximately 5D from
the stenosis), where the shear layer has started to break apart and create
disturbed flow outside of the central core, high levels of wss are found,
up to 150Pa in small sections. The extent of this disturbed downstream
region extends for around 4D, with very low or zero levels of wss either
side. Upstream of the stenosis, the wss also quickly returns to a small value.
For all six timepoints examined within the cycle, elevated values of wss are
found in the stenosis region, though these values drop to 15Pa at t = 0.3 s.
During the diastole section of the cycle, seen for the timestep of t = 0.2 s,
wss values of 50Pa are seen at a location approximately 1D upstream from
the stenosis. At the remaining points within the cycle, the wss remains at a
low value for the region before and after the stenosis.

4 Conclusions

A three dimensional Large Eddy Simulation was conducted of a 50% oc-
cluded vessel, with a typical femoral artery profile used as the transient inlet
conditions; the fluid was assumed to be homogenous, Newtonian and incom-
pressible and the walls are assumed rigid. During systole, a central core
of high speed fluid was observed moving downstream of the stenosis, sur-
rounded by sections of slow reverse flow; during diastole, again, a core of fast
moving fluid is observed, now on the upstream side of the stenosis. Regions
of high vorticity are seen near the time of peak systole, and some less high
values found for the peak diastole region. For the relatively mild case of a
50% occluded vessel, the computed results for wss indicate that over one
cycle the wss will oscillate from 15Pa to 150Pa in the region of the stenosis.
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Downstream of the stenosis, where the breakup of the fast moving central
core is found, wss values also fluctuate from less than 5Pa to 150Pa. In
this region, the high values of wss are not uniform across the diameter (due
to the non-asymmetric breakup of the core) and therefore oscillations within
the one cycle would also be expected. les has been shown to be a feasible
option for the study of stenosed arterial flows, allowing detailed temporal,
three dimensional characteristics to be captured. Due to the computationally
intense nature of the simulations, the extent of the geometry was restricted
in length; the results indicate that both upstream and downstream bound-
aries should be located further away from the stenosis. In particular, the
spatio-temporal graph of subgrid scale viscosity clearly showed the turbulent
flow disruption extended beyond the length of the domain in the downstream
direction. Further work is being conducted to further refine the results.
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