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Transitions in density dependent harvesting of
a logistic population in a slowly varying

environment
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Abstract

We previously applied a multiscale method to construct general
analytic approximations to the solution of a harvested logistic sys-
tem, where the system parameters vary slowly in time and the har-
vesting was maintained at either subcritical or supercritical levels—
representing survival or extinction of the population. This article
extends these results by including an analytic approximation through
the transition from subcritical harvesting to supercritical harvesting.
This approximates the population as it is driven from a surviving
population to extinction by over harvesting. These results compare
favourably with numerical solutions.
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1 Introduction

Grozdanovski et al. [3] considered the evolution of a spatially homogenous
single species population that was subject to harvesting at a rate proportional
to the population. They showed that the change in the population over
time, p(t, ε), could be expressed in dimensionless form as the solution of the
initial value problem

dp(t, ε)

dt
= r(εt)p(t, ε)

(
1−

p(t, ε)

k(εt)

)
− µe(εt)p(t, ε), p(t = ti, ε) = pi ,

(1)
where ε > 0 , and where µ > 0 and pi > 0 are dimensionless constants
independent of ε. The initial value in equation (1) differs slightly from that
of Grozdanovski et al. [3], the initial time now being arbitrary.

Grozdanovski et al. [3] concentrated on two cases: subcritical harvesting,
which corresponds to r(εt) − µe(εt) > 0 on t > ti ; and supercritical har-
vesting, which corresponds to r(εt) − µe(εt) < 0 on t > ti , where the rate
of growth, r(εt), rate of harvesting, µe(εt), and the carrying capacity, k(εt),
are assumed to be positive for all t > ti .
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In order to simplify calculations we rewrite (1) as

dp(t, ε)

dt
= a(εt)p(t, ε) − b(εt)p2(t, ε), p(t = ti) = pi , (2)

where a(εt) = (r(εt) − µe(εt)) and b(εt) = r(εt)/k(εt).

Previous work [3] applied a multiscaling method to the differential equa-
tion (1) to obtain two two-term expansions representing the solutions in the
subcritical and supercritical harvesting cases. These combine into one general
form which, in terms of the formulation (2), becomes

p(t, ε) =
a(t1)

b(t1) + Ca(t1)e−σt0
+ ε

a(t1)b
′(t1) − b(t1)a

′(t1)

a(t1)
(
b(t1) + Ca(t1)e−σt0

)2 + O(ε2), (3)

where the two time variables t0 and t1 are

t0 =
σ

ε

∫ t1
εti

a(s)ds and t1 = εt ; (4)

and C is a constant, determined by initial conditions, that may depend
on ε [3].

The subcritical harvesting case (a(t1) > 0 on t1 > εti) is obtained by
setting σ = 1 , whereas setting σ = −1 gives the supercritical harvesting
case (a(t1) < 0 on t1 > εti). Grozdanovski [2, Chapter 5] derived the expan-
sion (3).

Expansion (3) displays variation of the population on two time scales: the
fast time scale t0; and the slow time scale t1. For fixed ε > 0 and either
choice of σ, t0 → ∞ as t1(and t) → ∞ . Similarly for t1 bounded away
from εti as ε→ 0 , t0 →∞ as ε→ 0 . Thus, on any set of t1 values bounded
away from εti as ε→ 0 , the expansion (3) passes through a rapid transient
state (via fast t0 variation) to a slowly varying limiting state,

p(t, ε) =
a(t1)

b(t1)
− ε

a ′(t1)b(t1) − b
′(t1)a(t1)

a(t1)b(t1)2
+ · · · , (5)
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when σ = 1 , and the zero state when σ = −1 . Both these states are
independent of C, and hence independent of any given initial conditions.

Further observation of the expansion (3) shows that, in general, as a(t1)→ 0

the first term tends to zero while the second term becomes unbounded. This
implies that in any region where a(t1) = O(ε), there is a disordering of the
two terms in (3), leading to the failure of this expansion to represent the
solution of (2). This was also noted by Grozdanovski et al. [3]. In particular
the two term expansion (3) fails in any region that includes a zero of a(t1).

This article extends earlier work [3] by considering the case of a system that
starts in a state of subcritical harvesting and at some point in time moves to
a state of supercritical harvesting, where it remains. The change point is a
zero of a(t1), which we term a transition point. By the discussion above the
expansion (3) fails (is disordered) in a neighbourhood of this transition point.
Such failure can occur naturally when the rate of harvesting increases over
time, or environmental factors result in r(t1) declining over time, causing
r(t1) − µe(t1) to change sign.

More specifically we assume that the function a(t1) has a single isolated
simple zero, at a point we denote by t̄1 = εt̄ (equivalently t̄ = t̄1/ε); that is

a(t̄1) = 0 and a ′(t̄1) < 0. (6)

We also assume that the transition point t̄ occurs well after the the initial
transient behavior of the system has died away and that there are no extended
regions where a(t1) = O(ε).

In dealing with this transition in the following sections, we consider three
t1 time regions as follows. We choose δ to be small, positive and independent
of ε. Then Regions 1, 2 and 3 are defined by: Region 1, εti 6 t1 6 t̄1 − δ ;
Region 2, t̄1 − δ 6 t1 6 t̄1 + δ ; Region 3, t̄1 + δ 6 t1 <∞ .

We approximate solutions to the differential equation of (2) in Region 1 and 3
using expansions of the type (3), as constructed by Grozdanovski et al. [3].
We construct an approximate solution in the (small) transition Region 2
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using local analysis. This solution links to the expansions of Regions 1 and 3
using a matching technique, to provide an approximation to the evolving
population on all of t > ti .

2 Solutions away from the transition point

Here we consider the solutions of the differential equation of (2) in Regions 1
and 3; that is, away from the transition region.

As noted above, we here only consider situations where the system makes a
single isolated transition from subcritical harvesting to supercritical harvest-
ing, corresponding to a zero of a(t1) = r(t1) − µe(t1).

Since a(t1) > 0 and is independent of ε on all of Region 1, the expansion (3)
with σ = 1 represents the population there, and application of the initial
conditions in (2) [2] gives the two term expansion in Region 1 as

p(t, ε) =
a(t1)aipi

b(t1)aipi + a(t1)(ai − bipi)e−t0

− ε
p2i
[
a3i (a

′(t1)b(t1) − b
′(t1)a(t1)) + a

3(t1)(b
′
iai − a

′
ibi)e

−t0
]

a(t1)ai
[
b(t1)aipi + a(t1)(ai − bipi)e−t0

]2
+ O(ε2), (7)

where t0 and t1 are given by (4) with σ = 1 , and the subscript i denotes
values taken at the initial time, t = ti .

In Region 3, a(t1) < 0 , so the expansion (3) with σ = −1 applies. However,
t1 = εti is not an initial point for Region 3, so we modify the definition of (4)
to be

t̃0 = −
1

ε

∫ t1
t̄1

a(s)ds and t1 = εt . (8)
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Then our expansion in Region 3 becomes

p(t, ε) =
a(t1)

b(t1) + Ca(t1)et̃0
+ ε

a(t1)b
′(t1) − b(t1)a

′(t1)

a(t1)
(
b(t1) + Ca(t1)et̃0

)2 + O(ε2). (9)

This leaves the constant C in (9) undetermined. We return to this in the
next section.

3 Solutions around the transition point

We now turn to solutions of the differential equation in (2) in Region 2.
As noted above, when a(t1) = O(ε) the expansion (7) becomes disordered
and fails to represent the solution of (2). Under our assumptions above, and
noting (6), we see that a(t1) = O(ε) corresponds to an interval of extent O(ε)
centred on t̄1, the zero of a(t1).

We now examine solutions of the differential equation (2) in a small interval
about the transition point t̄1 that contains the interval above. To do this we
consider a new time variable τ,

t1 = t̄1 + ε
ατ , (10)

where exponent α is a positive constant to be determined, and define the
solution of (2) about t̄1 by

p̃(τ, ε) ≡ p(t̄1 + εατ, ε). (11)

For bounded τ values, (10) describes an interval centred on t1 = t̄1 of ex-
tent O(εα).

In terms of these variables, the differential equation of (2) becomes

dp̃

dτ
= a(t̄1 + ε

ατ)εα−1p̃− b(t̄1 + ε
ατ)εα−1p̃2. (12)
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Under our earlier assumptions,

a(t̄1 + ε
ατ) = O(εα) (13)

for bounded τ values. Thus the first term on the right side of (12) is O(ε2α−1);
whereas the second term is O(εα−1).

We now choose an exponent α that allows (12) to generate solutions that
display the necessary limiting properties as τ → ±∞ , to allow a matching
procedure to be used.

Under (13), the first term on the right side of (12) will show an order balance
with the left side if we choose α = 1/2 . However, the second right side term
is now unbounded as ε → 0 , so overall balancing fails. Similarly, choosing
α = 1 balances the left side and the second right side term, but leaves the
first right side term as O(ε). Thus the dominant differential equation in
our O(εα) region is of the form

dp̃

dτ
= (constant)p̃2. (14)

which does not have solutions displaying the desired limiting properties
as τ→ ±∞ . Again balancing does not succeed.

In order to gain further insight, we look at the two term expansion (7)
about t̄1. In Region 1, at points well after the transients have died out, the
solution (7) takes the form (5). Substituting for t1 from (10) and expanding
for small ε gives (5) as

p̃(τ, ε) = ε1/2
(
a ′
1τ

b1
−

1

b1τ

)
+ · · · , (15)

where the subscript 1 denotes values at t1 = t̄1 . This suggests that for
small ε the solution around the transition point has the form

p̃(τ, ε) = ε1/2w(τ), (16)
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and the equation (12) becomes

dw

dτ
= a(t̄1 + ε

ατ)εα−1w− b(t̄1 + ε
ατ)εα−1/2w2. (17)

Noting (13), we see that now the first term on the right side of (17) is O(ε2α−1),
as before, but now the second term is O(εα−1/2). Thus an order balance is
achieved on both sides if we choose α = 1/2 . Substituting α = 1/2 and

w(τ, ε) = w0(τ) + ε
1/2w1(τ) + · · · (18)

into (17), and taking leading order terms gives

dw0

dτ
= a ′

1τw0 − b1w
2
0 , (19)

which has solution

w0(τ) =
2
√

−a ′
1 exp( 1

2
a ′
1τ
2)

b1
√
2π erf( 1

2

√
−2a ′

1τ) +D
, (20)

where

erf(x) =
2√
π

∫ x
0

exp(−t2)dt , (21)

and D is an arbitrary constant.

Now consider the consequences of these calculations. We have ε1/2w0(τ),
with w0(τ) given by (20), as a leading order approximation to p̃(τ, ε) in
a region of extent O(ε1/2) about the transition point. At points t1 < t̄1 ,
the expansion (5) represents the solution to leading order. In terms of the
local variable τ this becomes (15). As they stand, these two regions remain
separated as ε→ 0 . However, if there is an overlap interval, common to both
as ε → 0 , we claim that both expansions are valid in this overlap region.
This leads to the simple matching condition that as τ → −∞ , ε1/2w0(τ)
must tend to the expression (15).
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Calculating the expansion of (20) as τ → −∞ , and comparing with (15)
shows that this is only possible if we set D = b1

√
2π , making the leading

order approximation to the solution of (2) about t̄1

p̃(τ, ε) = ε1/2ω(τ) = ε1/2
2
√

−a ′
1 exp( 1

2
a ′
1τ
2)

b1
√
2π
[
1+ erf( 1

2

√
−2a ′

1τ)
] + · · · . (22)

This choice for the constantD is confirmed when we note that the asymptotic
expansion of (22), as τ→ −∞ , is

p̃(τ, ε) = ε1/2
[
a ′
1τ

b1
−

1

b1τ
+ O

( 1
τ3

)]
. (23)

We now consider the matching of the expansion (9) in Region 3 to that of
Region 2, (22). If we assume a set of τ values that overlap Regions 2 and 3,
these are characterized by large τ. For τ→∞ , (22) tends to√

−a ′
1

b1
√
2π

exp
(1
2
a ′
1τ
2
)

. (24)

Now consider the expansion (9) in an overlap region. Since t1 = t̄1 + ε
1/2τ ,

we have that a(t1) = O(ε1/2) in such a region, and the first term of (9)
dominates, hence there is no disordering.

To leading order in small ε,

t̃0 = −
1

2
a ′
1τ
2, (25)

and so the leading term of (9) becomes, to leading order, after some rear-
ranging,

ε1/2a ′
1τ exp( 1

2
a ′
1τ
2)

b1 exp( 1
2
a ′
1τ
2) + Cε1/2a ′

1τ
. (26)
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Now, in any proposed overlap region between Regions 2 and 3, τ is large
and positive so it is reasonable to ignore the exponential in the denominator
of (26). Hence (24) and (26) are matched by choosing

C =
b1
√
2π

ε1/2
√

−a ′
1

. (27)

With this value of C, to leading order, (9) becomes

p(t, ε) =
ε1/2a(t1)

ε1/2b(t1) +
(
b1
√
2π/

√
−a ′

1

)
a(t1)et̃0

=
ε1/2
√

−a ′
1

b1
√
2π

e−t̃0 + O(ε1/2). (28)

In view of (25), equation (28) is the same, to leading order, as the transition
solution (22); that is, the expansion away from the transition in Region 3 is
effectively zero, and (22) represents the solution from t1 = t̄1 onwards. This
feature is used in the following section.

4 Uniform approximation

Having found a solution about the transition point t̄1 it is straightforward
to construct a uniform solution in the interval [ti, t̄]. We do this by additive
composition; that is, we add the two solutions given by (22) and (3) and
subtract off the common part. The common part is just the expression given
by (15). Using (4) and (10) we rewrite τ in terms of t and t̄ as τ = ε1/2(t− t̄).
The common part is now

cp = ε1/2
(
a ′
1ε
1/2(t− t̄)

b1
−

1

b1ε1/2(t− t̄)

)
, (29)
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where t̄ is the transition point. The uniform approximation valid for the
interval [ti, t̄] is then

p(t, ε) =
a(εt)aipi

b(εt)aipi + a(εt)(ai − bipi)e−t0

− ε
p2i
{
a3i [a

′(εt)b(εt) − b ′(εt)a(εt)] + a3(εt)[b ′
iai − a

′
ibi]e

−t0
}

a(εt)ai[b(εt)aipi + (a(εt)ai − a(εt)bipi)e−t0 ]2

+ ε1/2
2
√
−a ′

1 exp( 1
2
a ′
1ε(t− t̄)

2)

b1
√
2π
[
1+ erf( 1

2

√
−2a ′

1ε
1/2(t− t̄))

]
− ε1/2

(
a ′
1ε
1/2(t− t̄)

b1
−

1

b1ε1/2(t− t̄)

)
+ O(ε2) (30)

where t0 is given by (4) with σ = 1 .

As argued in the previous section, the transition expansion (22) is used to
represent the population throughout all of [t̄,∞), to leading order. Written
in terms of t, this is

p̃(t, ε) = ε1/2
2
√

−a ′
1 exp( 1

2
a ′
1ε(t− t̄)

2)

b1
√
2π
[
1+ erf( 1

2

√
−2a ′

1ε
1/2(t− t̄))

] + · · · . (31)

The additive composition as used for Regions 1 and 2 could be used for this.
The common part between Regions 2 and 3 is zero. Moreover, since all terms
of (9) are exponentially small as ε → 0 in Region 2, the expansion there is
effectively the zero expansion. So composition between Regions 2 and 3 gives
the result (31).

5 Comparison with numerical solutions

Here we compare the analytic approximation, given by (30) to the left of
the transition point, and (22) to the right of the transition point, with the
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numerical solution of (2). We first consider the case where the carrying
capacity, k(t1) = 1 , is a constant while the growth rate, r(t1), and harvesting
rate, e(t1), both vary slowly:

k(t1) = 1 , r(t1) = 0.8+ 0.02 sin(t1), e(t1) = e
0.01t1 − 0.32 , (32)

with µ = 1 , ti = 0 , ε = 0.01 and pi = 0.005 . Figure 1 shows that the
analytic approximation gives good agreement with the numerical solution,
almost coinciding.

In this next example we consider almost the same system:

k(t1) = 1 , r(t1) = 0.8+ 0.02 sin(t1), e(t1) = e
0.007t1 − 0.27 , (33)

with µ = 1 , ti = 0 , ε = 0.01 and pi = 0.005 . The slight change in
the harvesting rate, e(t1), has been chosen so that the difference a(t1) ap-
proaches 1.5ε in the vicinity of t = 500 . Under these conditions we expect
the two term approximation, given by (30), to begin to fail. Figure 2 shows
this failure where the analytic approximation deviates from the numerical
solution centred around t = 550 .

6 Discussion

For small ε > 0 , expansions (30) and (31) provide simple explicit leading
order approximations to the evolving population p(t, ε) given by (2) when
we move through a transition from subcritical to supercritical harvesting,
as discussed in Section 1. When compared with the results of numerical
calculation, they give excellent agreement under suitable conditions.

These approximations are general in form, and may be applied to any arbi-
trary combination of a(εt) and b(εt) (or r(εt), e(εt) and k(εt)) satisfying
simple smoothness conditions and displaying a single transition at t = t̄

satisfying (6).
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Figure 1: Population, p, as a function of time, t, for harvesting, where
the multi-scale approximation (using (30) to the left of the transition point
and (22) to the right of the transition point) is shown as black-dashed and
numerical solution as green-solid; for the choice of system equations (32),
with p0 = 0.005 and ε = 0.01 . The black dashed curve sits almost exactly
on top of the green continuous curve. The blue vertical line identifies the
time at which the transition occurs.
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Figure 2: Population, p, as a function of time, t, for harvesting, where
the multi-scale approximation (using (30) to the left of the transition point
and (22) to the right of the transition point) is shown as black-dashed and
numerical solution as green-solid; for the choice of system equations (33),
with p0 = 0.005 and ε = 0.01 . The analytic approximation (black dashed
curve) differs from the numerical solution (green continuous curve) in the
region around t = 500 , which correspond to the situation where the two
functions r(t1) and e(t1) are close together but do not cross. The blue vertical
line identifies the time at which the transition occurs.
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It is interesting to compare the problem (2) with the particular example of
Dahlquist’s Knee [1, 4]

ε
dy

dt
= (1− t)y− y2, y(0, ε) = y0 . (34)

Replacing t by t/ε in (34), we have

dy

dt
= (1− εt)y− y2, y(0, ε) = y0 . (35)

This is now of the form of (2), with a(εt) = 1 − εt , b(εt) = 1 and displays
a transition at t1 = εt = 1 . It has been used [1] to demonstrate the failure
of numerical schemes to solve such problems when ε is small and positive. It
may be analyzed using matching techniques [4], by locating an initial layer
at t1 = 0 of thickness O(ε) and a transition layer at t1 = 1 of thickness O(

√
ε),

then matching between the various subregions of t1 > 0 .

Our expansion (30) combines rapidly changing transient components, arising
from the t0 variation adjacent to t1 = εti , with a slowly varying compo-
nent (5) outside this initial region. These correspond to the initial layer and
‘outer expansion’ arising in the matching analysis of O’Malley [4]. Our layer
analysis at the transition point parallels previous work [4], while O’Malley [4]
identifies the ‘outer expansion’ beyond the transition point t1 = 1 as the zero
expansion (compare with our Section 6 discussion).
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