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Scheduling trains with cross entropy
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Abstract

The logistics of moving grain from silos to ports is constrained
by the number of trains available and the capacity of loading and
unloading facilities. We aim to schedule the available trains to move
grain from silos to the port as quickly as possible. The sequence
of trips that minimises the time required to complete all trips is a
permutation of a basic sequence that has the required number of trips
to each silo. We use the Cross Entropy Optimisation method to search
for a permutation that minimises span. For small problems, where
the optimal solution can be found by enumeration, the Cross Entropy
Optimisation method achieves solutions within 5% of the optimum.
It can also find good solutions for large problems.
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1 Introduction

Trains are often used to transport grain from rural silos to ports. The logistics
of moving grain from silos to ports is constrained by the number of trains
available and the capacity of loading and unloading facilities. We aim to
schedule the available trains to move grain from silos to the port as quickly
as possible.

For our particular deterministic problem there are several silos and one port
(see Figure 1). The port can unload only one train at a time; if another train
arrives at the port while a train is unloading, the second train must wait in
a queue for the port to become available. Similarly, each silo can load only
one train at a time, and so trains may have to queue at silos. The loading
time at each silo is fixed, as is the unloading time at the port.

The number of trips required to each silo is specified. When a train finishes
unloading at the port, we send it to any silo requiring more trips. The



2 Problem formulation C334

silo 1

silo 2
silo 3

port

Figure 1: An example network connecting three silos and one port.

sequence of destinations is called a trip sequence. The number of times each
silo appears in the trip sequence corresponds to the number of trips required
to that silo.

The time taken to complete all trips depends on the trip sequence, because
some sequences will result in longer queueing durations at silos and at the
port. We aim to find the trip sequence that minimises the time required
to complete all trips. For large problems there are too many possible trip
sequences to evaluate, so we use Cross Entropy Optimisation to search for
good solutions. The method is similar to that used to solve the Travelling
Salesman Problem [2].

2 Problem formulation

We consider a problem with one port and many silos. For each silo j we know

• the time required for an empty train to drive from the port to silo j;
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• the time required for a train to load at silo j;

• the time required for a full train to drive from silo j to the port.

We also know

• the time required to unload a train at the port;

• the number of trains;

• the time that each train is initially available to depart the port;

• the trip sequence.

We assume that the trains are identical, and that any train can service any
silo.

Using this information, we simulate the movement of trains and calculate
the time required to complete all trips. Each time a train is ready to depart
the port, we send it to the next silo in the trip sequence. We use simulation
rather than direct calculation because we cannot tell in advance the order in
which trains will depart the port.

Figure 2 shows an example run with eight trips to silo 1 and six trips to
silo 2. The horizontal axis represents time and the vertical axis represents
location. There are two trains, dark and light.

The trip sequence is [1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2]. Notice that the first
time the dark red train returns from silo 2, it is delayed at the port because
the light blue train is unloading. There are also three occasions at silo 1 and
two occasions at silo 2 where the light blue train arrives before the dark red
train has finished loading, and so is delayed.

The requirement of eight trips to silo 1 and six trips to silo 2 is used to
construct an initial sequence [1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]. Our problem
is now to find a permutation of this initial feasible sequence that minimises
the time require to complete all trips.
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silo 1

silo 2

Figure 2: Train graph for trip sequence [1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2] us-
ing two trains.

3 Cross entropy optimisation

The Cross Entropy method is a probabilistic search technique that can be
used for rare event simulation and for optimisation [2, 3]. The key ideas are:

• represent the solution by parameterised probability density functions
(pdf);

• generate some random candidate solutions; and

• use the best of the candidate solutions to update the pdf parameters
so that the next iteration produces better candidate solutions.

The method we use to represent and solve our problem is based on the
formulation of the Travelling Salesman Problem [2, Section 4.2].

We illustrate this method using a simple example with m = 2 silos. Suppose
we require n1 trips to silo 1, and n2 trips to silo 2. Let X be the set of
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Table 1: Probability generation for trips (1, 2).
trip sequence probability S(x)

[1, 1, 1] p11p21p31 ∞
[1, 1, 2] p11p21p32 ∞
[1, 2, 1] p11p22p31 ∞
[1, 2, 2] p11p22p32 S122
[2, 1, 1] p12p21p31 ∞
[2, 2, 1] p12p22p31 S221
[2, 1, 2] p12p21p32 S212
[2, 2, 2] p12p22p32 ∞

all possible trip sequences, and let S(x) be the span associated with trip
sequence x ∈ X.

3.1 A relaxed problem using node placement

To make it easier to formulate our problem, we relax the constraint that each
x ∈ X must have the correct number of trips to each silo, and set S(x) =∞ for
any infeasible trip sequence or the trip sequence which has incorrect number
of trips to each silo. Let X∗ be the set of all possible trip sequences with
length n = n1 + n2.

We represent candidate solutions using an (n×m) matrix P where Pij is the
probability that trip i is to silo j. This representation is a variation of the
node placement method that allows us to make more than one trip to each
silo. If we require, for example, one trip to silo 1 and two trips to silo 2 then
the probability of each possible trip sequence x ∈ X∗ is shown in Table 1.

The trip sequences that do not have one trip to silo 1 and two trips to silo 2
have S(x) =∞. The density function f used to generate candidate solutions
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is

ln f(x;P) =

n∑
i=1

m∑
j=1

I{xi=j} lnpij (1)

where the indicator function

I{xi=j} =

{
1, if trip i is to silo j,
0, otherwise.

For each trip sequence, we simulate the train movements to determine the
corresponding span. We then select a set of elite sequences that have low
span. These elite sequences are used to generate a new probability matrix Q
that minimises the Kullback–Leibler distance D between

• I{S(X)6γ}f(x;P), the density of the elite trip sequences generated using
probability matrix P, and

• f(x;Q), the density we will use to generate the next trip sequences.

The Kullback–Leibler Cross Entropy distance between these two density
functions is

D
[
I{S(X)6γ}f(x;P), f(x;Q)

]
=
∑

I{S(X)6γ}f(x;P) ln(I{S(X)6γ}f(x;P))

−
∑

I{S(X)6γ}f(x;P) ln f(x;Q).

MinimisingD is equivalent to choosingQ such that
∑
I{S(X)6γ}f(x;P) ln f(x;Q)

is maximised:
max
Q
EPI{S(X)6γ} ln f(x;Q). (2)

We also require the elements in each row of Q to sum to one. We imple-
ment these constraints using a Lagrange multiplier µi for each row. The
constrained optimisation problem is

max
Q

min
µ

[
EPI{S(X)6γ} ln f(x;Q) +

n∑
i=1

µi

(
m∑
j=1

qij − 1

)]
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which has solution

qij =
EPI{S(X)6γ}I{xi=j}

EPI{S(X)6γ}
.

The corresponding estimator is

q̂ij =

∑N
k=1 I{S(Xk)6γ}I{xi=j}∑N

k=1 I{S(Xk)6γ}

. (3)

This equation has a straightforward interpretation: element qij is the pro-
portion of elite trip sequences where trip i was to silo j.

The Cross Entropy Optimisation method uses smoothed updating of the
probability matrix P

Pk+1 = αQk + (1− α)Pk ,

where Pk is the initial probability matrix at step k, Qk is the probability
matrix calculated from the elite samples at step k, and α is a smoothing
parameter. The parameter α is used to avoid converging too quickly to a
local optimum.

3.2 Modified node placement

The node placement method used in the previous section generates candidate
solutions that may not have the desired number of trips to each silo, and
then assigns these infeasible trips sequences an infinite span. In practice, we
speed up the method by not generating infeasible trips. As before, Pij is the
probability that trip i is to silo j. Algorithm 1 gives the modified method.

Table 2 shows the probability of generating various trip sequences using the
unconstrained method and the modified method. The number of trips re-
quired is one trip to silo 1 and two trips to silo 2. We have Pij = 1/3.

Consider the first four rows of the Table 2. The unconstrained method can
generate any of these trip sequences, with the probabilities shown in the



3 Cross entropy optimisation C340

Algorithm 1 modified cross entropy method.

1. Use the first row of P to select the destination for the first trip using
roulette-wheel selection. Suppose the value is j.

2. If all the required trips to silo j have been done, set Pij = 0 for all
remaining rows i, and renormalise each row.

3. Repeat the process with the remaining rows of P to select the destina-
tions for the remaining trips.

Table 2: Probability generation using unconstrained method and modified
method.

trip sequences unconstrained probability modified probability
[1, 1, 1] 1

3
1
3
1
3
= 1

27
-

[1, 1, 2] 1
3
1
3
2
3
= 2

27
-

[1, 2, 1] 1
3
2
3
1
3
= 2

27
-

[1, 2, 2] 1
3
2
3
2
3
= 4

27
1
3
11 = 9

27

[2, 1, 1] 2
3
1
3
1
3
= 2

27
-

[2, 1, 2] 2
3
1
3
2
3
= 4

27
2
3
1
3
1 = 6

27

[2, 2, 1] 2
3
2
3
1
3
= 4

27
2
3
2
3
1 = 12

27

[2, 2, 2] 2
3
2
3
2
3
= 8

27
-
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(a)

Silo 1

Silo 2

(b)

Silo 1

Silo 2

(c)

Silo 1

Silo 2

Figure 3: Convergence at iteration 0, 10 and 20.

table. With the modified method, once we have generated the first trip to
silo 1, the two remaining trips must be to silo 2.

The graphs in Figure 3 illustrate the convergence of the method at itera-
tions 0, 10 and 20. In this example we require twenty five trips to silo 1 and
fifteen trips to silo 2, with four trains. Each vertical red bar corresponds to
a trip i, and indicates Pi,2, the probability that trip i is to silo 2.

The train graph in Figure 4 shows the train movements.

4 Cross entropy optimisation versus

enumeration

For sufficiently small problems, the optimal solution can be found by calcu-
lating time span for every possible trip sequence. The problems shown in
Table 3 are calculated using the following problem data:
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silo 1

silo 2

Figure 4: Train graph for (25, 15) trips using four trains.

• time taken to travel from the port to silo 1 is 5.74;

• time taken to travel from silo 1 to the port is 7.97;

• time taken to travel from from the port to silo 2 is 9.52;

• time taken to travel from silo 2 to the port is 12.46;

• loading duration at silo 1 is 6.4;

• loading duration at silo 2 is 6.4;

• unloading duration at the port is 4.

Table 3 shows some results.

For small problems, complete enumeration is faster than the Cross Entropy
Optimisation method. However, the Cross Entropy Optimisation method
is able to find good solutions for problems that are too large for complete
enumeration.

The convergence of the Cross Entropy Optimisation method, and the solu-
tion converged to, depend in part on the selection of three parameters: the
number of samples N generated at each iteration, the proportion ρ of the
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Table 4: Cumulative distribution for three parameters for six examples.

N α ρ distribution
500 0.45, 0.55, 0.65 0.005, 0.01, 0.03, 0.05
1000 0.45, 0.55, 0.65 0.005, 0.01, 0.03, 0.05
1500 0.45, 0.55, 0.65 0.005, 0.01, 0.03, 0.05
500, 1000, 1500 0.45 0.005, 0.01, 0.03, 0.05
500, 1000, 1500 0.55 0.005, 0.01, 0.03, 0.05
500, 1000, 1500 0.55 0.005, 0.01, 0.03, 0.05
500, 1000, 1500 0.45, 0.55, 0.65 0.005
500, 1000, 1500 0.45, 0.55, 0.65 0.01
500, 1000, 1500 0.45, 0.55, 0.65 0.03
500, 1000, 1500 0.45, 0.55, 0.65 0.05

samples in the elite set, and the smoothing parameter α. Table 4 shows
results of experiments where we used Cross Entropy Optimisation to find
solutions to six different problems using every combination of parameters
N ∈ {500, 1000, 1500}, α ∈ {0.45, 0.55, 0.65} and ρ ∈ {0.005, 0.01, 0.03, 0.05}.

Each row of the Table 4 shows the cumulative distribution of results when
one of these parameters was held constant. The horizontal axis in each graph
represents the value of the solution relative to the optimal solution (found by
enumeration). The vertical lines correspond to relative values of 1.00, 1.01,
. . . , 1.05. For each set of parameters, all best solutions found were within 5%
of the optimal solution. In general, the ideal parameter values for a given
problem have to be determined experimentally.

5 Conclusions and future work

Transportation problems that seek an optimal trip sequence can be difficult
to solve, particularly when there are many possible sequences. The Cross
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Entropy Optimisation method is easy to implement and is effective at finding
good solutions to our problem.

We have started investigating the use of the Cross Entropy Optimisation
method to solve multi-objective versions of our problem. Multi-objective
versions of the method are discussed by Unveren et al. [1]. However, it
is not straightforward because many different sequence map onto the same
objective function value. For example, a sample problem with ten trips to
each of two silos gave 184756 trip sequences, 28703 unique objective values,
but only 23 Pareto sequences and 18 Pareto points.
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