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Euler’s disk: examples used in engineering and
applied mathematics teaching
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Abstract

Euler’s disk is a toy described at http://www.eulersdisk.com. As-
pects of its motion are modelled as an ideal disk rolling on a horizontal
plane. In the final stages of Euler disk motions, the disk is nearly flat
to the plane. Asymptotic approximations to the frequency of finite
amplitude oscillations on steady (non-dissipative) rolling motions of
the Euler disk are described. There are two different approximations
which are appropriate in different limits. When the parameters are
such that both apply, the formulae for the frequency agree: this ap-
pears to be new and simple. The material has been used in teaching;
the teaching, and related, materials are available via the web [Keady,
Math2200 Lecture Handouts, UWA].
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1 Introduction

The phenomena illustrated by Euler’s disk—an abrupt end to the motion,
‘stopping in finite time’—is also illustrated with a coin spinning on a hor-
izontal surface. Although dissipative effects are crucial for the above phe-
nomenon, there are other quantities of interest; for example, some sound
frequencies associated with oscillatory non-dissipative motions that may be
possible to measure experimentally. This article treats non-dissipative mo-
tions only, which are described by equations (1) below.

Equations (1) have often been used over the past century as an example in
applied maths teaching [13, 10]. The Euler disk toy has been sold for just
a decade. Most of the studies in recent research articles on the Euler disk
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have, correctly, focussed on the central unsolved problems of the dissipa-
tive mechanisms. The results in this article were largely discovered when
teaching applied and engineering maths involving topics like the numerical
solution of odes, and stability of equilibria. The Euler disk motivated our
studies, studies which appear to be largely new but decidedly elementary,
concerning the oscillations about the motions of the disk moving at a small
angle to the ‘table’ (horizontal plane). In particular, the asymptotics given
in equation (6) of §1.2 are new. The ode (16) for certain motions nearly flat
to the horizontal plane was new to the problem at the time this article was
written. Since then Srinivasan and Ruina [8] noted a similar use for it. The
analysis of the ode (16), given in §4, is, in the context of this problem, also
new. However, the ode has other applications, and some results we found
are re-discoveries of those given by Whittaker [13]. The methods we use are
elementary. The material in this article, together with the supporting mate-
rials given by Keady [4], is intended to complement the existing treatments
of the rolling disk problem in applied mathematics textbooks [10, e.g.].

There is room for future work in several directions. None of the asymptotics
in this article have been rigorously proven. More importantly, it is not clear
from the published experimental data that the nonlinear oscillations solving
the odes are observed in the late stages of the Euler disk motions treated in
this article. For references to the experimental articles, see §6.

Our definitions follow those of Synge and Griffith [10]. The radius of the disk
is denoted by a and the acceleration due to gravity by g. The inclination
of the plane of the disk to the vertical is θ. Figure 1 shows the rectangular
coordinate system moves with the disk and with its origin C at the centre
of the disk. The first coordinate axis, and associated direction i, is in the
direction of the line joining the centre of the disk to the point of contact P.
The vector k is normal to the plane of the disk. The vector j, so that ijk is
an orthogonal triad, is therefore in the plane of the disk and horizontal. The
angular velocity of the disk is ω = ω1i + ω2j + ω3k . One finds that the
four unknowns θ, ω1, ω2 and ω3 satisfy a set of four, first order, odes. Our
equations (1a) to (1d) are readily derived from these, where γ parametrises
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Figure 1: Disk rolling on a plane.

the mass distribution of the rotationally symmetric disk: γ = 2/3 for a
uniform disk, and 1/2 for a hoop.

Much of the interest in the Euler disk motions concerns its behaviour when
the disk is nearly flat to the table; that is, θ is just a little less than π/2. Thus
we define the complementary angle α = π/2− θ , which we normally take to
be small and positive. We record, from §4, at the right below, approximating
equations for small α [4, Part II]:
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θ̇ = −ω2 , (1a)

ω̇1 = −ω2 (tan(θ)ω1 + 2ω3) , (1b)

ω̇2 =
(1− γ) tan(θ)ω2

1 + 2ω1ω3

(1+ γ)

−
2γ sin(θ)

(1+ γ)

g

a
, (1c)

ω̇3 = −γω2ω1 . (1d)

α̇ = ω2 , (2a)

ω̇1 = −ω2ω1/α , (2b)

ω̇2 =
(1− γ)

(1+ γ)

ω2
1

α

−
2γ

(1+ γ)

g

a
, (2c)

ω̇3 = −γω2ω1 . (2d)

Provided θ(0) 6= (n + 1/2)π , n integer, solutions to initial value problems
for (1) exist, either for all time, or for an interval [0, t∗) where t∗ is such that
cos(θ(t)) → 0 as t → t∗ . This latter possibility is that of the disk falling
into the ‘table’ (the horizontal plane).

We have dE/dt = 0 where the energy E is

4γE = (1− γ)ω2
1 + (1+ γ)ω2

2 + 2ω
2
3 + 4γ

g

a
cos(θ) .

The angle φ, shown in Figure 1, defined by Synge and Griffith [10], satisfies
ω1 = − cos(θ)φ̇ .

1.1 Stability of equilibria and linear oscillations

The systems (2) and (1) are of the form ẏ = f(y). Equilibrium points
are vectors ye where f(ye) = 0 . We assess stability by linearizing, setting
up a problem for the remainder ρ where y = ye + ρ , which is ρ̇ = Jρ ,
where J = Df(ye) is the Jacobian of f evaluated at ye.

The signs of the real parts of the eigenvalues of J classify the stability of an
equilibrium: if all the real parts are negative, the equilibrium is stable; if all
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the real parts are nonpositive, with at least one of the real parts zero, we will
describe the equilibrium as neutrally stable; if any real part is positive, the
equilibrium is unstable.

For any of the rolling disk equilibria, J is rank two and J3 = λ2J with λ2 a
simple expression in terms of the components of J [4, Part I], . When λ is
pure imaginary, the frequency of the oscillations is then ν0 = |λ|.

We treat equilibria where 0 < |θeq| < π/2 with the disk rolling in a circle
and ignore the degenerate case of θ = 0 where the disk is either rolling
in a straight line or spinning on its axis. For these equilibria, when θeq is
sufficiently close to π/2, all the equilibria are (neutrally) stable. This is
relevant to the smooth behaviour of the Euler disk after its short period of
initial unsteady behaviour.

1.2 Nonlinear oscillations

The systems (2) and (1) are integrable. Dividing equations (1b) and (1d) by
equation (1a), or dividing equations (2b) and (2d) by equation (2a), yields
linear odes that have closed form solutions [7]. The solutions for ω1(θ)
and ω3(θ) depend on the initial conditions. On substituting the expressions
for ω1(θ) and ω3(θ) into equation (1c) or (2c) one finds that the variables θ
and α each satisfy a ode of the form

ü+ f(u) = 0 . (3)

A first integral of this is E is constant where

E(u, u̇) =
1

2
(u̇)2 + F(u) with F(u) =

∫
f(u)du . (4)

Infinitesimally small oscillations are treated by the methods of the preceding
subsection, by finding the eigenvalues of J. Applying this to the equilibria of
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§2, yields the frequency

ν20 =
g

a

6γ

1+ γ

1

cos(θeq)
∼
g

a

6γ

1+ γ

1

αeq

, where αeq = π/2− θeq . (5)

Consider periodic solutions arising as perturbations of the equilibria of §2.
We find that the frequency ν of these oscillations satisfies

ν ∼ ν0

[
1−

5

12

(
αeq − αmin

αeq

)2
+ · · ·

]
under appropriate limits. (6)

In §3 the limit, denoted (L3), is

first

(
αeq − αmin

αeq

)→ 0, then αeq → 0 . (L3)

In §4 the limit, denoted (L4), is

first αeq → 0, then

(
αeq − αmin

αeq

)→ 0 . (L4)

We find that the asymptotics for the frequency in equation (6) also hold
under limits (L4).

There are many open questions, both mathematical [4, Part II] and physical
(§6).

2 Moffatt’s equilibria

In the simplest model of the Euler disk motion, the point of rolling contact
describes a circle with a constant angular velocity, φ̇, the centroid is fixed,
and the motion persists forever. These are equilibria of (1) withω2 = 0 = ω3

andω1 = − cos(θ)φ̇ . The equation that says ω̇2 = 0 (when sin(θ) 6= 0) gives

ω2
1 =

g

a

2γ

1− γ
cos(θ) or φ̇2 =

g

a

2γ

(1− γ) cos(θ)
. (7)
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When α is small, as in the final stages of an Euler disk motion, and we deal
with a disk (γ = 2/3), we have φ̇2 ∼ 4g/(aα) [5, equation (1)].

Approximate models, giving a first impression of what might be happening,
have the centroid slowly falling vertically and energy slowly being dissipated.
The expression for the energy, in the ω2 = 0 = ω3 equilibrium case, for a
disk, is

E =
3

2
mga cos(θ) ∼

3

2
mgaα . (8)

Moffatt’s analysis [5] supposed that energy slowly dissipates, the motion
being like a slow evolution along a branch of equilibria: it leads to a ‘finite
stopping time’. (The precise mechanisms involved in the dissipation, and
whether slipping is important, remain unresolved.)

For the rest of this article there is no dissipation. As noted above, it is easy
to calculate the natural frequency ν0 = |λ| for the very small perturbations
on the steady rolling above. For these equilibria, ω3 = 0 and α is small, and
ν0 is given by equation (5) [4]. Both ν0 and φ̇ have the same asymptotic
dependence on αeq; that is, both are proportional to

√
g/(aαeq). For a disk,

ν0/φ̇ =
√
15 .

Without dissipation, periodic perturbations of the steady rolling also persist.
One can imagine such perturbations as ‘rocking’ about a diameter. Larger
amplitude rocking perturbations are the subject of this article. With θ =
π/2− α we are concerned with initial value problems with

α(0) = α0 , (we usually take α0 = αmin , 0 < αmin < αeq) (9a)

ω1(0) =
αeq

α0

√
g

a

2γ

(1− γ)
cos(θeq) ∼

√
g

a

2γ

(1− γ)

α3eq

α20
, (9b)

ω2(0) = 0 , (9c)

ω3(0) = 0 . (9d)
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3 Small nonlinear perturbations

3.1 Poincaré–Lindstedt for the ODE (3)

Let ueq be a (neutrally) stable equilibrium for the ode (3). Approximate,

f(u) = ν20(u− ueq) +
1

2
f ′′(ueq)(u− ueq)

2 +
1

6
f ′′′(ueq)(u− ueq)

3 + · · · ,

where ν20 = f ′(ueq). Then, as found by a Poincaré–Lindstedt asymptotic
approximation [6, §2.3.2], small oscillations about equilibrium solution satisfy

u ∼ ueq + ε cos(νt) +
ε2f ′′(ueq)

4ν20

(1
3

cos(2νt) − 1
)
+ · · · , (10)

ν ∼ ν0

[
1+

9(f ′′′(ueq)/6)ν
2
0 − 10(f

′′(ueq)/2)
2

24ν40
ε2
]
+ · · · , (11)

as ε→ 0 .

3.2 The rolling disk in general

As described in the beginning of §1.2, we derive the following linear odes:

dω1

dθ
= tan(θ)ω1 + 2ω3 ,

dω3

dθ
= γω1 . (12)

These are solved [7, equation (17)] using the initial values for θ, ω1 andω3 to
find, on using (1c), that θ(t) satisfies a ode of the form θ̈+ f(θ) = 0 . While
the explicit formula for f(θ) is elaborate [7, equation (17)], the right-hand
side of (1c) is relatively simple. Using the odes (12) as substitution rules,
derivatives with respect to θ, that is f(n)(θ), can be calculated to be of the
form

f(n)(θ) = f1,1,nω
2
1 + f1,3,nω1ω3 + f3,3,nω

2
3 + f0,n ,
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where the f∗,n on the right, when multiplied by cosn+1 θ, are polynomial,
total degree at most (n + 1) in sin θ and cos θ. To use this in the asymp-
totics (10,11) we need to make use of the initial conditions and to evaluate
the derivatives at θeq.

3.3 The ω3 = 0, θ 6= 0 equilibria

We treat perturbations about the equilibria described in §2 using the odes (1)
with the initial conditions (9). To approximate the ε2 term of equation (11)
we need only have the leading term in the approximations:

ω3(θeq) ∼ 0 , ω1(θeq)
2 ∼

g

a

2γ

1− γ
cos(θeq) .

The zeroth order term ν0 follows from the eigenvalues of the Jacobian. The
expression for ν2 in general is lengthy. When we take a series expansion
for αeq near zero, we get the asymptotics (6) under the limit (L3).

4 Approximations with θ ≈ π/2, ω3 ≈ 0

We now write ω1(α) rather than ω1(θ) = ω1(π/2− α).

Thomson [11, p.154] notes that one can do much more than a mere linear sta-
bility analysis and that when α is small, there are significant simplifications
to the odes describing the nonlinear motions. We approximate cos θ ∼ α

and sin θ ∼ 1 . We also follow Thomson [11] in

assuming ω3 is much smaller than ω1/α . (13)

(Batista [1] gives a more general study, without requiring ω3 to be small.)
Using this assumption in equation (1b) for ω̇1 we obtain (2b), which can be
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integrated with the initial conditions (9a–9b) to get

ω1(α) ∼
ω1(α0)α0

α
.

Using this in the ω̇3 equation (1d), we find

ω3(α) ∼ ω3(α0) − γω1(α0)α0 log

(
α

α0

)
. (14)

We can now check some internal consistency of the approximation. If we
start with αω3/ω1 small, as in (9d), then

αω3

ω1

≈ −γα2 log

(
α

α0

)
, (15)

and thus it remains small provided αmax is small.

On using assumption (13) in equation (1c) we derive (2c) and then find

α̈ = ω̇2 =
(1− γ)

(1+ γ)

(ω1(α0)α0)
2

α3
−

2γ

(1+ γ)

g

a
. (16)

At this stage it is appropriate to state that we pose the problem with
first αeq > 0 given and small, which then specifies the initial ω1 and this, in
turn, enters into the coefficients of the second order ode. So we rewrite (16)
as

α̈+ f(α) = 0 , where f(α) = −
ν20αeq

3

(
α3eq

α3
− 1

)
. (17)

There is precisely one equilibrium for this ode and it is (neutrally) stable.
The rather elaborate choice in (9b) is so that the equilibrium point for our
simple ode will be the same as the αeq associated with our solutions of
problem (1). When (9c) is satisfied, a first integral of (17) is

E(α,ω2) =
1

2
ω2
2+F(α) = F(α0) where F(α) =

1

2

ν20αeq

3

(
α3eq

α2
+ 2α

)
, (18)
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and E is the energy in this approximation up to a factor of a2m(1+ γ)/2γ.

Define the involution

involα(α) =
α3eq + α

3/2
eq

√
8α3 + α3eq

4α2
.

Then
αmax = involα(αmin), αmin = involα(αmax).

A ‘difficulty’ with Problem (1) is that there are solutions [3] which ‘fall
through the table’. In this regard, our second order ode (17) is a lot simpler.
Note: (a) E(α,ω2) → ∞ as α tends down to 0 from above; and (b) E(α,ω2)
is a convex function in the half space {(α,ω2) | α > 0}.

Theorem 1 1. Any solution of the ode (17) which starts in the positive
half-space {(α,ω2) | α > 0} of the phase space remains in that half-
space.

2. The trajectory, in the (α,ω2) phase space, of any solution of the dif-
ferential equation (17) which has α(0) > 0 is a closed convex curve.

Proof: The results are immediate from the remarks about E and because
E remains constant along a trajectory of solutions of the ode. ♠

4.1 The period T

The integral for the period, with F as in equation (18),

T = 2

∫ involα(αmin)

αmin

dα√
2(F(αmin) − F(α))

,
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is integrated explicitly as follows. Define

as =
−1+

√
1+ 8(αmin

αeq
)3

4(αmin

αeq
)2

, s1 =
√
1− 8a3s , s2 = 4a

3
s+s1+1 , s3 =

2s1

s2
.

Then

T = −
4a3s EllipticK(s3) − s2 EllipticE(s3)

ν0 as
√
s2/6

. (19)

The frequency is ν = 2π/T . Taking ε ∼ (αeq − αmin)/αeq to zero yields the
asymptotics (6), this time under limit L4.

4.2 The ODE u ′′ = 1/u3 − 1

On rescaling t and α to τ and u, respectively, the ode (17) can be written
u ′′ = 1/u3−1 . Whittaker [13] treats other applications of this ode for u(τ).

• One application is that the ode describes, in polar coordinates, central
orbits with a constant attractive force to the origin. This problem, and
the precession that is observed, was considered by Newton.

• A second application is that the ode describes, again in polar coor-
dinates, a particle sliding, with gravity acting, inside a smooth cone
whose axis is vertical. Hooke, seeking analogues of central orbits show-
ing precession, performed experiments on this arrangement.

5 Numerics for the initial value problem

(1,9)

Plots of the orbits around the straight-line rolling equilibria are given by
O’Reilly [7, Figure 4]. Figure 2 plots orbits about the equilibria of §2.
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Figure 2: The solid curves are contours of the energy for the exact solutions
perturbing about theω3 = 0 family of equilibria in the case of a disk γ = 2/3 ,
θeq = 1.5 . The right-hand plot shows, scaled up, a small portion close to the
equilibrium: the dotted curves are the approximations of §4.
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Equations (1) supplemented with φ̇ = − cos(θ)/ω1 and further equations [4,
10] enable one to find other quantities related to the motions, the centroid,
the point of contact with the plane, etc. Numerical integration showing these
is available on the web.1

6 Further work?

It would be good to know if items in this study manifest themselves in ex-
periments with Euler disks [9, 12, 2], for example in the sound measured.
Another quantity which has been measured in experiments is the location of
the centre. In experiments [2], oscillations about a small circular path of the
centre are reported. The observations reported there are associated with a
particular experiment with larger values of ω3 than treated in §4.

Disks with finite thickness lead to very similar odes which are integrable [1,
8]. The approximations of this article should follow through for these.
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