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Determining some of the triggers for early life
cycle failure in decay affected logistic queueing
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Abstract

Life-cycle cost estimates for large scale, long term, future military
capabilities are difficult to make and subject to complexities. Usually
they are generated from anecdotal experience. However, experience
may not be a sound basis, so modelling and simulation are employed to
define conditions that lead to early system failure in measures such as
availability levels or the capability’s life-of-type. Such models typically
have common characteristics, including decay or degradation, queue-
ing delays, availability of resources, and maintenance processes. Our
generic model is a queue server, discrete event simulation that emulates
macroscopic maintenance processes using time based parameters and
statistical distributions. Previously we reported that the simulated
system shows evidence of bifurcation-like behaviour in life-of-type esti-
mates. This suggested that uncertainties in microscopic variables (such
as inter-arrival times) cause instabilities in high level strategic perfor-
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mance indicators, making the prediction of such indicators difficult
and bringing into question the use of mean based estimation methods
for inventory provisioning. Our objective is to define the conditions
which lead to system failure. We use a series of numerical simulation
experiments to investigate and define such conditions. Outcomes show
that system performance is sensitive to the types of input distribution
used and that decay processes are strongly associated with complex
behaviour even when most of the interacting factors of the real system
have been removed from the simulation.
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1 Introduction

Complexities are likely to be involved in the maintenance and repair of large
scale long term military vehicle systems, given the many factors which could
interact to cause complex behaviour, whereas the existence of complexities
in a model of such a system, after many of the interacting factors have been
removed, is noteworthy. We previously showed that a model as simple as a
single queue with identical servers and with several input distributions as
well as a source of progressively increasing arrival rates, can exhibit complex
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behaviour such as bifurcations [1], with system lifetime varying by a factor
of two or more over each set of Monte–Carlo runs. Early system failure was
related to stochastic variations in the inputs—confirmed by removing the
variations—and it seemed likely that the magnitudes of the variances could
be important. Surprisingly, our trials showed that the variances of the input
distributions had only a second order effect on the bifurcations. Thus we
had evidence of complex behaviour, with no real pointers to the contributing
factors. Other researchers [2, 5, e.g.] reported results which suggest that
simple queueing models can exhibit complex behaviour; however, there is no
general understanding of the factors that are likely to contribute to complexity
in such models. Our eventual aim is to determine the mechanisms which
contribute to complex behaviour in our particular model. In this article we
use a series of numerical experiments to identify those inputs which make
some contribution to the occurrence of branching.

The repair cycle for a fleet of vehicles is represented as a single queue,
multi-server arrangement with several input distributions, covering vehicle
breakdowns, accidental damage, and scheduled maintenance. Performance
is measured by the fraction of the vehicles available for use at any given
time, and the parameters in the model are set so that, based on mean value
estimation, the model performance should be satisfactory for greater than
300, 000 time steps. We use a Monte–Carlo approach, with multiple samples
from each of the input distributions and we run multiple repeats for each set
of parameter values. For non-zero variance in the input distributions, each
set of repeats results in a mixture of successes and failures, where the system
fails when vehicle availability falls below some threshold. Our approach is
to systematically set the variances of particular distributions to zero and
measure the occurrence of failures. Our results show that only two of the
input distributions contribute to stochastically derived failure, with the major
role being played by the distribution which includes a decay factor.
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2 The maintenance problem and modelling

structure

Our model develops from a queueing theory perspective. The model is a
discrete event simulation (des) designed in the matlab/Simulink/SimEvent
environment and emulates a G/D/c type of fifo (First In First Out) queue
and server system [1]. The various input profiles that determine inter-arrival
and service times are discussed below.

The model was formulated to mimic the macroscopic behaviour of generic
one-type vehicle fleet availability within a maintenance system. Figure 1
shows typical behaviour with respect to military vehicle fleet availability given
as percentage of resources for some operational availability (oa) requirement
with a life of type (lot) around ten years. In this figure we assume an over
allocation in resources of 10% above such a requirement that is represented
by a sparing provision. Like many through life support systems it eventually
undergoes a period of decline and decay. The curve in Figure 1 represents
expected behaviour of a metamodel [4], such that the simulation model with
known inputs should exhibit on average similar outcome behaviours.

The key outcome measure is availability (vehicles ready at any instant)
where the model is based on a fleet of 600 vehicles, and the percentage
availability is determined by the number of vehicles not in the maintenance
queue server system.

The key features of our discrete event simulation model are

• Two different mechanisms for unscheduled failures are considered. The
first one describes failures caused by material fatigue and ageing, and
results in unscheduled maintenance requirements that increase slowly
over time. Its functional form reflects experience with military (vehicle)
capability systems, in which serviceability degrades gradually over the
system lifetime. The second one generates a background of accidental,
memoryless failures as caused, for instance, by vehicle accidents.
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Figure 1: A typical life of type in available fleet stock levels.
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• Scheduled maintenance requirements are represented by a third distri-
bution and this is overlaid with the two unscheduled inputs [5].

• Random variates describe the inherent uncertainties in failure rates and
servicing times. They cause random, small time scale fluctuations in
maintenance demand and server throughput. These fluctuations are
very small in comparison to the total number of entities in the model;
that is, they only perturb slightly a corresponding mean based inventory
provisioning system.

• The number of servers is fixed (at 32 as in Experiment I [1]) and is not
considered as part of the input profile.

• Average input inter-arrival times are designed as a function of time to
incorporate a creeping decay. Arrival rates increase from approximately
88% to 99% of mean throughput capacity. This represents capacity
planning based on a near maximum efficiency mean value model.

Five input profiles (random variates) are used in the simulation model of
which two are found to be prominent in determining outcome characteristics.
The first three represent statistical demand distributions f(x) describing inter-
arrival times for queue arrivals, with inter-arrival times then being used to
mimic vehicle arrivals.

1. Decay random variate (A = 16 , B = 4 , λ = −0.000005 , η = 0.1)

f(x; t;A;B; λ;η) = (A+ Beλt)
∥∥1/Nx(1,η

2)
∥∥ . (1)

The gradual decay time is derived from a failure rate that satisfies the
Verhulst equation giving a form of the logistic curve [6] and is often
used in models for rates of systems failure in the process of aging [3].
The arrival rate for creeping decay is multiplied by a random variate
Gaussian distribution with unity mean and a variable standard deviation
which is determined in testing. This Gaussian distribution gives rise to
small scale fluctuations that are present in real world repair demands
caused by equipment degradation.
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2. Unscheduled requests (Exponential with β = 70)

f(x;β) =

{
1
β
e−x/β, x > 0 ,

0 , x < 0 .
(2)

3. Scheduled requests (Uniform with a = 60 and b = 80)

f(x) =

{
1

b−a
, for a 6 x 6 b ,

0 , for x < a or x > b .
(3)

The above two demand distributions describe regular and irregular
maintenance arrival times. We use a randomised uniform distribution
for inter-arrival times that relate to regular repair demands and a
randomised exponential distribution (the distribution of times between
events in a Poisson process) for those relating to irregular memoryless
failure [5].

4. Service times (Gaussian) The repair server system is an N-server
(N = 32). Repair processing times for each individual entity are sampled
from a randomised Gaussian distribution (the fourth input) with mean
µ = 360 and variance σ2 = 40. When repairing the selected entity an
entire server within the N-server is busy for the whole randomly chosen
time period.

5. Server downtime (negligible effect) Every 5000 time steps one
server goes down for the same period of time it takes to service an entity
(vehicle)—the net contribution though is less than 0.25% to throughput.

This system of inputs and model were tested in Experiment I [1]. The
performance measures and outcomes of Experiment I then gave insight into
why further experimentation is required in investigating possible causes of
system failure. This experiment involved repetitive (Monte–Carlo) simulation
for aggregating outcome statistics using the same parameter inputs/types of
distributions with different randomisation seeds. Figure 2 explains the main
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Figure 2: Typical output given by two des model runs with the same input
profiles (different randomisation seeds).

feature of Experiment I. Here the output given by two des model runs with
the same input profiles but with different randomisation seeds shows a failing
lot case (left) and a successful one (right).

The analysis of Experiment I indicated the following.

• Combined presence of fluctuations and decay gives rise to branching in
availability outcomes, with consistent instability times.

• The creeping decay generates a particular type of branching in the loss
of vehicles in maintenance.

• A possible explanation for this is that in some instances server queue
behaviour for queue length (related to availability in our case) analyti-
cally behaves much like integral equations with memory effects of which
some are known to have bifurcations. However, it seems solving queue-
ing equations is too cumbersome and difficult to achieve an analytical
expression in the case provided to verify this.

• Fluctuations in the service times of the servers do not seem to affect the
branching process and cause only negligible changes in output compared
to the branching effect.
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3 Experimentation, results and analysis

In earlier work [1] we found that different simulations using a sequence of
differing random variates generated from identical input distributions could
produce system lifetimes that varied by a factor of two or more, apparently
via a branching or bifurcation process. The branching only occurred when
the input variables (additions of vehicles to the repair system) had non-zero
variances but, remarkably, the size of each variance otherwise contributed
only second order effects to the results.

Three different input distributions are used in the model and we seek, in
this article, to explore the contribution that each type of input makes to the
branching (and therefore to the uncertainty in system lifetime). Input types
make two contributions to the load on the repair system: they produce different
numbers of vehicle arrivals, thus having different weights in their contributions
to overall effects; and they involve stochastic variations which depend on
the type and shape of the underlying distribution functions and associated
parameters. One distribution type, covering vehicle breakdowns, also involves
degradation of the equipment, so that the rate of arrivals increases over time.
We use two processes to explore the occurrence of branching: first we vary
the proportion of vehicle arrivals generated by each distribution; second, we
run a series of numerical experiments, using a switch on the variance of each
distribution to generate different combinations of stochastic and deterministic
inputs. This method is known as screening and the approaches, screening by
weighted contribution and 2k factorial factor screening the fluctuations in the
input profiles, are well accepted techniques.

In the first screening approach we look at the case of increasing and decreasing
the contribution that the decay random variate has on the overall throughput
of entities. We test the cases by adjusting the proportional contributions ωi

of the three arrival input distributions to the overall arrival rate, while the
overall arrival rate is held constant (

∑
iωi = 1). This was achieved by

changing values A,B,β,a and b in equations (1), (2) and (3).
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Figure 3: Availability levels when two-thirds of arrivals are caused by the
decay random variate, one-sixth by unscheduled maintenance and one-sixth
by scheduled maintenance.
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Figure 4: Availability levels when one-third of arrivals are caused by the
decay random variate, one-third by unscheduled maintenance and one-third
by scheduled maintenance.
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We test cases (ω1,ω2,ω3) = (1, 0, 0), (2/3, 1/6, 1/6), (1/3, 1/3, 1/3) by run-
ning 300 simulations for each case. The initial case gives consistent early
system failure and exhibits virtually no branching phenomenon. The second
two are shown in Figure 3 and Figure 4, where each plot represents availability
levels for the corresponding simulation runs sampled at every 50, 000 time
steps. Transfer of weight from the decay distribution results in a reduction in
the tendency for early failure and a widening of the spread within each branch.

The second screening test investigates the output responses from selectively
removing the fluctuations in each of the three arrival input profiles. When
the randomisation is off, the decay input profile is set to A+ Beλt, and the
unscheduled and scheduled input profiles are set to a constant distribution
of µ = 70. For each of the eight possible combinations of on/off fluctuation
selection arrangements for these input profiles a Monte–Carlo experiment of
300 runs is performed. The observations from the eight Monte–Carlo tests
are outlined in Table 1. The columns on the left hand side represent whether
input profile 1 (IPr1 — the decay random variate), input profile 2 (IPr2 —
unscheduled) or input profile 3 (IPr3 — scheduled) has any variance at all
in fluctuation.

Randomisation in the scheduled uniform input profile had a minimal effect
on clustered sets of data about branching but did not affect branching overall.
Removing fluctuation from the decay input profile has the largest effect on
removing branching particularly when the Poisson variation is also turned off.
The Poisson input causes some branching and does not cause system failure.

4 Summary

The presented study is motivated by model experimentation that incorporates
decay processes and lot issues into logistic des models. There are aspects of
such model behaviour which in many cases can be catastrophic to outcomes.

We used factor screening techniques to determine possible causes of branching
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Table 1: A 23 factorial test on switching on/off randomisation variance in
the three arrival time distributions.

IPr1 IPr2 IPr3 Observation of output (on branching)
on on on Substantial branching with some deviation

within branches
on on off Substantial branching with some deviation

within branches
on off on Substantial branching not much deviation

within branches
on off off Substantial branching not much deviation

within branches
off on on Small branching triggered but not failing
off on off Small branching triggered but not failing
off off on Slight error around deterministic
off off off Deterministic

in output and system failure from the aspects of the input profiles. From
our experimentation we observe that reducing the weighted contribution
from decay causes the model to behave in a more predictive fashion. The
evidence suggests that by reducing the contribution to input from decay
the output exhibits less extreme branching outcomes and seems more like
a fluctuating output measure bounded by envelope functions. The question
then arises on whether the branching effects are a result of the input profile
of the decay process or the inherent characteristic of fluctuation affecting a
queueing process. The observations from factorial factor screening suggest the
former, that the decay input profile is the prominent trigger for the branching
process in the simulation output.

From an application perspective the better these behaviours are understood
the more direction simulation and logistical planners have in designing suitable
model structures.
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