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Calculation of linear ship waves
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Abstract

The Sea Wave Pattern Evaluation suite of programs was originally
developed to calculate far field wave elevations for thin ships but grew
to encompass a raft of other tasks including calculating the complete
wave field with velocity components for multihull and submerged ves-
sels, incorporating sinkage and trim, viscous damping and finite depth
effects, and measuring wave resistance and viscous resistance. It also
led to investigations into waves produced by pressure distributions and
planing surfaces. This article traces Sea Wave Pattern Evaluation’s
development, explains the mechanics of its key components, and refers
to some of the results that have been produced by it.
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1 Introduction

Swpe calculates the free surface elevations and fluid particle velocities about
ships and submarines subject to the assumptions of thin-ship theory. Its
major advantage is its speed of execution which allows the free surface to be
evaluated at high resolution (of the order of 100, 000 field points) in a matter
of minutes.

The program was developed by the author jointly with E. O. Tuck and
L. Lazauskas between 1999 and 2004, during which time a series of re-
ports [5, 6, 7, 8, 9, 10, 11, 12] was prepared documenting each stage of
development. Several years have passed and it is interesting to reflect on
the project as a whole. This document summarises the major components of
swpe in the order that they were developed.

2 Mathematical formulation

We adopt a coordinate system in the frame of reference of the vessel where
x increases from bow to stern, y increases to starboard and z increases verti-
cally upwards. Assuming steady and irrotational flow of an inviscid and in-
compressible fluid allows the simplification to potential flow theory whereby
the velocity potential Φ(x,y, z) satisfies Laplace’s equation ∇2Φ = 0 and
the fluid particles’ velocities are prescribed by q = ∇Φ .

In general, the free surface boundary conditions are the dynamic boundary
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condition that the pressure p is a constant (arbitrarily zero) on the free
surface z = Z(x,y), and the kinematic boundary condition that there be no
flow through the free surface, that is q · n = 0 .

Defining the perturbation to the potential of a free stream with velocity U
as φ = Φ−Ux and substituting into Bernoulli’s equation for pressure p/ρ =[
U2 − (∇Φ)2

]
/2− gz and then neglecting terms of order O(φ2) yields a lin-

earised dynamic boundary condition from which the free surface elevation
can be calculated as Z = −Uφx(x,y, 0)/g . Undertaking a similar proce-
dure for the kinematic boundary condition yields the linearised kinematic
or Kelvin free surface boundary condition φxx + k0φz = 0 on z = 0 where
k0 = g/U

2.

Havelock sources satisfy both Laplace’s equation and the Kelvin condition
and therefore present a particular solution for the linearised problem. One
form for the velocity potential of a Havelock source of unit strength located
at depth |ζ| beneath the origin is [14]

G(x,y, z; ζ) = −
1

4π

(
1

R
−
1

R0

)
+
k0

2π2
<

∫π/2
−π/2

dθ sec2 θ∫∞
0

dk e−ik(x cos θ+y sin θ)+k(z+ζ)
1

k− k0 sec2 θ

where R is the distance between the point of evaluation and the source and
R0 is the same but for the image of the source, reflected in the plane z = 0 .
The path of integration passes above the pole so that the waves lie aft of the
source. If the path of integration passes beneath the pole then the solution
is reflected in the plane x = 0 and the waves lie ahead of the source.

The vessel’s hull y = η±Y(x, z) is subject to the Neumann boundary condi-
tion q · n = 0 which specifies that flow is tangential to the hull’s surface. Its
linearised approximation φy = UYx is satisfied by a continuous distribution
of Havelock sources over the hull centreplane B with strength σ = 2UYx [1].
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Thus, according to thin ship theory, the potential can be calculated as

φ(x,y, z) = 2U

∫∫
B

dξdζYξ(ξ,η, ζ)G(x− ξ,y− η, z; ζ) . (1)

In terms of computational effort, this is a quadruple integral which is to be
evaluated at each point of interest in the fluid.

A further simplification can be made when the Havelock source is decomposed
into local and far field components so that G = GL + GF. The local field
component GL is defined by GL(x,y, z; ζ) = G(−|x|,y, z; ζ). Being identical
to G ahead of the source, this function raises the free surface smoothly and
monotonically as it approaches the source, and being fore-aft symmetric the
free surface then decreases smoothly and monotonically back to z = 0 after
passing the source. Polynomials that approximate GL and that are evaluated
rapidly have been developed by Newman [2].

The far field component GF is zero ahead of the source. Recalling that the
path of integration passing beneath the pole produces a reflected solution
and denoting that function as G− we recognise that for x > 0 , GF = G−G−

and is therefore given by a path of integration that completely circles the
pole clockwise. Thus, for x > 0 , GF is −2πi times the residue at the pole,
specifically

GF(x,y, z; ζ) = −
k0

π
<i

∫π/2
−π/2

dθ sec2 θ e−ik1(x cos θ+y sin θ)+k1(z+ζ) (2)

where k1 = k0 sec2 θ . The advantage of this decomposition is thatGF involves
only a single integral, the dependence on k having been eliminated.

Thus, replacing G by GL + GF one decomposes the potential into local and
far field components φ = φL + φF and finds expressions for each. The local
field component

φL(x,y, z) = 2U

∫∫
B

dξdζYξ(ξ,η, ζ)GL(x− ξ,y− η, z; ζ) (3)
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requires a double integral to be computed at every point of interest in the
fluid, with GL to be evaluated of the order of 1000 times for each.

The far field component is

φF(x,y, z) = 2U

∫∫
B

dξdζYξ(ξ,η, ζ)GF(x− ξ,y− η, z; ζ) . (4)

By swapping the orders of integration to

φF(x,y, z)

= −2U
k0

π
<

∫π/2
−π/2

dθ sec θ k1e
−ik1(x cos θ+y sin θ)+k1z

[
PFT(θ) + iQ

F
T(θ)

]
(5)

where the free wave spectrum is

PFT(θ) + iQ
F
T(θ) =

1

−ik1 cos θ

∫∫
B

dξdζ Yξ(ξ,η, ζ) eik1(ξ cos θ+η sin θ)+k1ζ (6)

one moves the dependence on the location of the field point to the outer
integral. This reduces its computational workload to performing a double
integration over the body only once (for each θ), followed by a single integra-
tion to be evaluated at every point of interest in the fluid. Typically, of the
order of 1000 points are used to represent the hull so applying this technique
leads to a reduction in computation time by a factor of 1000. Also, if the
original k-integration would have been computed using 100 values for k then
a further reduction in computation time by a factor of 100 has been achieved.
Combined, the far field potential is calculated by as much as 100, 000 times
faster than could a näıve implementation of (1) for the total potential.

3 Development of SWPE

Prior to embarking on swpe, the team members had developed some in-
teresting programs and experience. Leo Lazauskas, under the guidance of
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Ernie Tuck, had developed programs Michlett and Polymich which calcu-
lated wave resistance from the free wave spectrum and had been used for
minimising wave resistance of multihulls. Importantly though, neither pro-
gram was able to compute wave elevations. I had developed the program
Nonlinear Free-Surface Flow Solver (nfsfs) [3] which determined nonlinear
waves and forces for submerged vessels. Each of those programs and the
skills and experience developed with them played an important role in the
development of swpe.

Michlett and Polymich were able to compute wave resistance which is similar
in computational complexity to the far field potential. Both require calcula-
tion of PFT + iQ

F
T and each involves a further integration with respect to θ to

be performed, although the integration for the far field component is tech-
nically more challenging because its integrand is rapidly oscillating. This
led to the first version of swpe (swpe v1) which computed far field wave
elevations plus surface velocity components aft of the stern. The restriction
of the program to a region aft of the stern was based on our mistaken belief
that PFT + iQ

F
T necessarily required the double integration to be performed

over the whole of the hull’s centreplane. At any rate, the value of the far field
component is as an approximation to the total flow, and this approximation
is only applicable aft of the stern. A feature of swpe is that the calcula-
tion of the PFT + iQ

F
T employed Filon quadrature to significantly enhance the

accuracy and speed of the computation [5].

Swpe represents the hull as a grid of equally spaced vertical stations and
equally spaced horizontal waterlines, with an offset Y(x, z) being specified at
each intersection. Swpe v1 was slightly limited in that the highest waterline
needed to be located at exactly z=0 so that only the submerged portion of
the hull was specified. This precluded the calculation of flows for totally
submerged vessels such as submarines unless several waterlines each with all
offsets being zero were specified between the top of the hull and the sea’s
surface. Also, because the waterlines needed to be evenly spaced and the up-
permost waterline needed to be at z = 0 , changing the depth of submergence
involved supplying a different set of hull offsets. This was both cumbersome
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and computationally wasteful and was easily rectified by replacing ζ by ζ+H
in the formulation, where a negative value of H represented the depth of sub-
mergence of the uppermost waterline. For the far field component this was
achieved simply by multiplying the integrand of (5) by a factor of ek1H. With
this minor change to the program, the second version, swpe v2, was able to
produce flows around submarines of arbitrary depth, without the need to
modify the offsets provided.

This allowed comparison between the results produced by swpe with those
produced by nfsfs, which could calculate the nonlinear solution but only
for completely submerged bodies. To accommodate this, nfsfs was mod-
ified from full nonlinear (Neumann–Stokes) mode to operate in two other
modes—one in which the free surface conditions were linearised (Neumann–
Kelvin mode) and another in which the hull was represented by a distribution
of sources along the centreplane with strength σ = 2UYx (Michell–Kelvin
mode). While the comparison between swpe and nfsfs’s Michell–Kelvin
mode were used to investigate swpe’s far field accuracy [6], the investigation
of the impact of the various boundary condition approximations was reported
separately [13].

Many if not most ships have a transom stern, where the longitudinal slope Yx
of the hull becomes large. While this is a violation of the assumptions of thin-
ship theory, it is accommodated numerically by integrating (6) by parts to
produce

PFT(θ) + iQ
F
T(θ) =

∫∫
B

dξdζY(ξ,η, ζ) eik1(ξ cos θ+η sin θ)+k1ζ

−
1

ik1 cos θ
eik1(ξ cos θ+η sin θ)

∫
dζ Y(ξ,η, ζ) ek1ζ

∣∣∣∣ξ=ξstern
ξ=ξbow

.

This form of the free wave spectrum has the additional advantage that it uses
the hull offsets directly rather than their x derivatives. Further, the offsets
at the bow are typically zero and so contribute nothing to its second term.
This formulation was implemented in swpe v3.
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Also introduced was a viscous damping factor exp[(−2k20νx sec4 θ)/U] which,
when injected in the integrand of (5), aided the numerical convergence of the
process. The factor was revised in swpe v6.

The aft-of-stern far field calculation was näıvely1 complemented by a rou-
tine that calculated the far field component between bow and stern using (4)
without swapping the order of integration. (Ahead of the bow the far field
component is zero.) This component was the most time consuming to calcu-
late due to its computationally expensive triple integral.

Coupled with a local field computation as per (3), we were finally able to com-
pute the total velocity potential everywhere, and that marked the completion
of swpe v3. Figure 1 shows, for a David Taylor Model Basin Model 5415
(length 5.72m, speed 2.064ms−1 and acceleration due to gravity 9.81ms−2),
the contribution of the local field component to the total wave elevation
along the side of the ship at a distance equal to one-tenth its length. Also
produced were figures showing the effects of viscous damping, the effects of
the transom stern formulation and a comparison with results calculated by
others [7].

The general expression for a Havelock source in a fluid of finite depth h [14]
is significantly more complex than its infinite depth counterpart but, when
evaluated on the free surface z = 0 , its far field component is

GF(x,y, 0; ζ)

= −
k0

π
<i

∫π/2
−π/2

dθ sec2 θ e−ik2(x cos θ+y sin θ)
coshk2(ζ+ h) sechk2h

1− hk0 sec2 θ sech2 k2h

where k2 is given implicitly as the solution of k2 = k0 sec2 θ tanhk2h . Re-
placing the infinite-depth form of GF with this finite-depth form in (4) and
swapping the orders of integration as before produces

φF(x,y, 0) = −2U
k0

π
<

∫π/2
−π/2

dθ sec θ k2e
−ik2(x cos θ+y sin θ)

[
PFT(θ) + iQ

F
T(θ)

]
1We found later a way to generalise (5) which was then implemented in swpe v5.
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Figure 1: Comparison of the total wave elevation and its local field compo-
nent along y = 0.572m for a Model 5415 hull of length 5.72m travelling at
speed 2.064ms−1 with acceleration due to gravity 9.81ms−2.
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where

PFT(θ) + iQ
F
T(θ)

=
1

−ik2 cos θ

∫∫
B

dξdζYξ(ξ,η, ζ) eik2(ξ cos θ+η sin θ)
coshk2(ζ+ h) sechk2h

1− hk0 sec2 θ sech2 k2h
.

Unfortunately, no equivalent of Newman’s local field polynomial approxi-
mations have been developed for finite fluid depth so swpe v4 is restricted
to calculating the far field component only, and even then only for the free
surface. Nevertheless, the dramatic impact of finite depth on the wake’s
envelope can be observed from the far field component alone [8].

Swpe v4 also saw the extension to calculating flows produced by vessels with
multiple hulls (for example, catamarans) or, equivalently, multiple vessels.
swpe calculates a potential that is subject to linear boundary conditions.
Linear superposition allows perturbation velocity potentials produced by in-
dividual hulls to be combined to yield the perturbation velocity potential that
would have been produced by all hulls combined. This was easy to implement
and allowed for interesting investigations into constructive and destructive
interference [8]. Figure 2 shows the combined wave pattern produced by a
ddg51 destroyer, a US Los Angeles class submarine and a Wigley-hulled
catamaran, each travelling at 30 knots.

Version 5 of swpe saw some significant improvement in terms of precision,
speed and functionality. Precision was improved by using second order inte-
gration routines for all integrations over the hull.

A major increase in computational speed was achieved by making an ob-
servation (drawn from extending the concept of transom sterns to transom
bows and then combining with superposition for multihulls) that two hulls in
tandem, with the transom stern of the first butted against the transom bow
of the second, should produce waves as though they were one hull (which, of
course, they are!). Their combined far field components at their intersection
would be due entirely to the first hull because the second has no far field
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Figure 2: Combined wave pattern produced by a ddg51 destroyer, a US
Los Angeles class submarine and a Wigley-hulled catamaran, each travelling
at 30 knots. The submarine (uppermost vessel) is only just submerged.
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component ahead of its bow. That is, part way along a ship’s hull the far
field component is due only to the part of the hull that lies ahead. This
led to the idea that it must be possible to calculate the far field component
at (x,y, z) between the bow and stern by integrating not over the entire body
but only from bow to x.

Recall that (2) applies only for x > 0 and that GF = 0 for x < 0 . This can be
formalised by introducing the Heaviside step function H(x) into (2) to give

GF(x,y, z; ζ) = −
k0

π
H(x)<i

∫π/2
−π/2

dθ sec2 θ e−ik1(x cos θ+y sin θ)+k1(z+ζ)

from where it follows that φF(x,y, z) is as before but with

PFT(θ)+iQ
F
T(θ) =

1

−ik1 cos θ

∫∫
B

dξdζYξ(ξ,η, ζ) eik1(ξ cos θ+η sin θ)+k1ζH(x−ξ) .

Effectively, this is an integration not over the whole of the hull but only over
the portion that lies ahead of the field point of interest (x,y, z).

Modification to the program allowed the far field component to be calculated
everywhere using the same technique that had previously only been available
aft of the stern. It increased the speed of calculation of the far field compo-
nent between bow and stern by a factor of around 50 (more specifically, a
factor equivalent to the number of columns of field points). Previously that
component had been the most time consuming to calculate, so the increase
in computation of this component translated to a significant increase in the
overall speed of the program [9].

In a similar way the functionality of the program was increased by allowing
the submergence parameter H to take on a negative value but for the body
integration to be done only for the portion of the hull that then lies beneath
the free surface. This allowed for hulls to be raised above the free surface and
for only the portion that was wet to contribute to the wavemaking. This was
used immediately to increase or decrease the draft of ships arbitrarily, without
the need for supplying recalculated offsets as input as had been required
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previously. A delightful set of figures of the waves created by a submarine at
a range of depths and as it breaches the surface were produced [11].

From there, a natural extension was to calculate the hydrodynamic and grav-
itational forces and moments acting on the hull and to adjust sinkage and
trim until they were in balance. Trim was achieved by a pseudo-rotation, in
which each station was raised/lowered by an amount proportional to its dis-
tance along the hull. This approximation is acceptable for the small angles
of rotation that are typical for a ship’s trim. The hydrodynamic forces and
moments were calculated from the velocity components over the hull. Sink-
age and trim were then solved for in a pair of simultaneous linear equations
that balance the (linearised) vertical forces and first moments. This process
could be iterated until a desired level of satisfaction had been achieved.

By these enhancements, swpe v5 was able to represent the hull more ac-
curately, calculate the entire flow significantly faster than previously, adjust
the depth or draft of vessels arbitrarily, and balance forces through sinkage
and trim. Figures showing comparisons between experimental results and
swpe’s calculations of sinkage and trim were also produced [10].

Swpe v6 investigated various alternative formulations for the viscous damp-
ing factor. The original formulation introduced in swpe v3 could be chal-
lenged on a number of grounds including dependence on the location of the
origin, independence of y, violation of Laplace’s equation and in particular
a lack of memory of the wave’s propagation. Various alternative formula-
tions were developed to overcome these objections [12]. The preferred factor,
exp

[
−4k21ν (x+ y tan θ) /U

]
, still suffers from most of the original objec-

tions.

The last version of swpe, version 7, contained enhancements to calculate
wave resistance and viscous resistance.

Although not the subject of the current article, a branch of swpe, swpe-pd,
was developed to calculate flows due to pressure distributions (for example,
hovercraft). Its mathematical formulation has strong similarities to thin
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ship theory [4]. Development was initiated on a further branch, swpe-fs,
intended to calculate flows due to flat ships (for example, speedboats) in
which the surfaces due to constant pressure panels (as calculated by swpe-
pd) are used to build a system of linear equations for pressures that deform
the surface in a way that matches the flat hull shape. Progress on swpe-fs
has been both difficult and limited due to the ill-conditioned nature of the
inverse problem that it seeks to solve.

4 Conclusion

The Sea Wave Pattern Evaluation (swpe) suite of programs started out
with the modest ambition of calculating far field wave elevations for thin
ships but grew to encompass a raft of other tasks including calculating the
complete wave field with velocity components for multihull and submerged
vessels, incorporating sinkage and trim, viscous damping and finite depth
effects, and measuring wave resistance and viscous resistance. It also led
to investigations into waves produced by pressure distributions and planing
surfaces. This article traces its development, explains the mechanics of its
key components, and refers to some of the results that have been produced
by it.
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