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Abstract

Marine fisheries play an important role in the economic development
of Indonesia. Besides being the most affordable source of animal protein
in the diet of most people in the country, this industrial sector could
provide employment to thousands who live at coastal area. We consider
the management of small scale traditional business at North Sumatera
Province which processes fish into several local seafood products. The
inherent uncertainty of data (for example, demand and fish availability),
together with the sequential evolution of data over time leads the
production planning problem to be a linear mixed-integer stochastic
program. We use a scenario generation based approach for solving the
model. The result shows the amount of each fish processed product
and the number of workforce needed in each horizon planning.
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1 Introduction

Marine fisheries play an important role in the economic development of
Indonesia. This industry could provide employment to people who live at
coastal areas, besides being a primary source of animal protein. The fisheries
industrial sector can be classified into three different parts: open sea fishing,
fish cultivation and processing fish. This article focuses on the latter sector.
Generally the processed fish industry in Indonesia is found near the coast.
There are a lot of varieties of processed fish produced, such as smoked fish
and salted fish. The management of the fish processing industry is dominated
by local traditional businesses, using conventional management strategies.
Consequently they do not have enough information regarding market demand
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and price. In this production planning situation, the current information may
be certain, but future events are inevitably stochastic.

The proposed model explicitly permits the incorporation of uncertain parame-
ters. Most of the references concerning optimisation problems in the presence
of uncertainty come under the heading of stochastic programming. Birge [1]
gives a good presentation of the basics. Two stage stochastic programs with
recourse typify a particularly important class of models. In such models the
objective function commonly corresponds to the minimisation of expected
costs (linear or nonlinear), although it can also refer to the expected value of
the absolute or quadratic deviations of certain specific goals or the variance
of the second stage recourse function. Two kinds of decision variables exist.
Those determined before the random variables have been revealed are called
first stage or here-and-now decision variables and represent proactive deci-
sions; they correspond to the production cost and workforce of the first period.
Those determined after the realisation of the random variables are called
second stage or recourse decision variables and represent reactive decisions
made in recourse or response to the uncertainty factor. Mulvey et al. [4], Sen
and Higle [6], and Rico Ramirez [5], for example, give more details.

In the case of discrete random variables, the resulting two stage recourse mod-
els are usually large and complex, and thus must be solved numerically using
suitable algorithmic strategies. Most of these algorithms apply decomposition
strategies that break the model down by scenario or stage in an iterative
scheme, allowing the resolution of smaller models (smaller in comparison to
the deterministic equivalent model in its extensive form which gave rise to
the original two stage model). In this article, a feasible neighbourhood search
method is proposed to solve an extended deterministic equivalent model, in
which each first stage variable is replicated for each scenario, with an imposed
equality for the new variable values (non-anticipativity constraints). Section 2
briefly reviews the two stage recourse model. Section 3 presents the problem
background. The stochastic programming model of the problem is the subject
of section 4. Section 5 presents the solution basic approach. Sections 7 and 8
present computational results and conclusions, respectively.
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2 Framework of two stage recourse model

This section briefly describes the framework of a two stage, stochastic, integer
programming model. Van der Vlerk and Haneveld [7] give more details. The
stochastic linear programming model is

min~cTx~x+

s∑
s=1

ps(~q
T~ys) , (1)

such that A~x = ~b , (2)

T s~x+W~ys = ~hs , s = 1, . . . ,S , (3)

~x,~ys > 0 , s = 1, . . . ,S . (4)

Equations (2) represent the first stage model and Equations (3) represent the
second stage model. ~x is the vector of first stage decision variables which
is scenario independent. The optimal value of x is not conditional on the
realisation of the uncertain parameters. ~cx is the vector of cost coefficient at
the first stage. A is the first stage coefficient matrix and ~b is the corresponding
right-hand side vector. ~ys is the vector of second stage (recourse) decision

variables. ~q is the vector of cost (recourse) coefficient matrix and ~hs is the
corresponding right-hand-side vector and T s is the matrix that ties the two
stages together where s ∈ Ω represents scenarios in future and ps is the
probability that scenario s occurs. In the second stage model, the random
constraint defined in (3), ~hs − T s~x , is the goal constraint: violations of
this are allowed, but the associated penalty cost ~qT~ys influences the choice
of ~x. ~qT~ys is the recourse penalty cost or second stage value function and∑S

s=1 ps(~q
T~ys) denotes the expected value of recourse penalty cost (second

stage value function).
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3 Problem background

Fish and its processed products are the most affordable source of animal
protein in the diet of most people. In Indonesia, most of the fish processing
industries are found near the coast. In these industries fish are processed
traditionally. There are eight kinds of fish product produced by the community:
dried fish, salted fish, bbq fish, pindang fish, smoked fish, fish preserved,
pressed fish, and fish bowl.

The fish processing industry under investigation is located at the eastern
coastal area of North Sumatra province of Indonesia. The industry has to
make a production plan for these eight fish processed products to fulfil market
demand over each period of time t, t = 1, . . . , T . In this case each period
equals three months. Therefore there are four periods in a year.

Model parameter and decision variables used throughout this article are
defined as follows.

Sets

• T = number of periods;

• N = set of products;

• M = set of sources;

• S = set of scenarios.

Variables

• xjt = Quantity of product j ∈ N in period t ∈ T (units)

– j = 1 for dried fish;

– j = 2 for salted fish;
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– j = 3 for BBQ fish;

– j = 4 for pindang fish;

– j = 5 for smoked fish;

– j = 6 for fish preserved;

– j = 7 for pressed fish;

– j = 8 for fish bowl.

• uit = Additional amount of resource i ∈M to purchase in t ∈ T (unit).

• kt = Number of workers required in period t ∈ T (man-period).

• k−t = Number of workers laid-off in period t ∈ T (man-period).

• k+t = Number of additional workers in period t ∈ T (man-period).

• Ijt = Quantity of product j ∈ N to be stored in period t ∈ T (units).

• Bjt = Under-fulfilment of product j ∈ N in period t ∈ T (units).

Parameters

• α,β,γ, δ,µ, ρ, λ are all costs (in idr, Indonesian currency, Rupiah).

• Djt = Demand for product j ∈ N in period t ∈ T (units).

• Ujt = Upper bound on ujt.

• rij = Amount of resource i ∈M needed to produce one unit of product
j ∈ N .

• fit = Amount of resource i ∈M available at time t ∈ T (units).

• aij = Number of worker needed to produce one unit of product j ∈ N .
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4 The stochastic programming model

Minimize ∑
t∈T

∑
j∈N

αjtxjt +
∑
i∈M

∑
t∈T

βituit +
∑
t∈T

µtkt +
∑
t∈T

γtk
−
t

+
∑
t∈T

δtk
+
t +
∑
s∈S

ps
∑
j∈N

∑
t∈T

ρsjtI
s
jt +
∑
s∈S

ps
∑
j∈N

∑
t∈T

λsjtB
s
jt (5)

subject to ∑
j∈N

rjixjt 6 fit + uit , for all i ∈M, t ∈ T , (6)

uit 6 Uit , for all i ∈M, t ∈ T , (7)∑
j∈N

ajxjt 6 kt , for all t ∈ T , (8)

kt = kt−1 + k
+
t − k−t , t = 2, . . . , T , (9)

xjt + B
s
j,t−1 + I

s
jt − B

s
jt = D

s
jt ,

for all j ∈ N, t ∈ T and s ∈ S , (10)

xjt,uit,kt,k
−
t ,k+t , Isjt,B

s
jt > 0 ,

for all j ∈ N, i ∈M, t ∈ T and s ∈ S . (11)

In this production planning problem we decide: the quantity of each fish
processed product to be produced in each period; the additional resource
to be used; the number of regular additional and laying-off workers in each
period.

The demand for each period is uncertain. Under the random demand in each
period we should decide the number of each product to be stored in inventory
or used to fulfil the under fulfilment for each period.

All of these decisions are formulated in expression (5) of the model as an
objective function. Constraint (6) expresses that the amount of resource i ∈M
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needed to produce product j ∈ N at least should have the same amount of
resources available at time t ∈ T together with the additional resource needed.
However, the additional resource needed has an upper bound, expression (7).
In constraint (8), we have the number of workers needed to produce one
unit product j ∈ N . Constraint (9) ensures that the available workers in
any period equals the number of worker from the previous period plus any
change in the number of worker level during the current period. The change
in the number of worker level may be due to either adding extra workers or
laying off redundant workers. Constraint (10) determines either the quantity
of product to be stored in inventory or to purchase from outside to fulfil the
shortfall in meeting market demand.

The model formulated in expression (5) through to (11) is in deterministic
equivalent form: the random factors are represented by scenarios; and in the
objective function the corresponding random terms are premultiplied by the
corresponding probabilities ps. The method for transforming a stochastic
programming model to its deterministic equivalent model was addressed by
Mawengkang et al. [2].

5 The solution basic approach

Consider a mixed integer linear programming problem in the following form

min
~x

{
~cT~x : A~x 6 ~b, ~x > 0

}
(12)

with xj integer for some j ∈ J , where J is an index set.

A component of the optimal basic feasible vector (~xB)k, solved as continuous,
can be written as

(~xB)k = βk − αk1(~xN)1 − · · ·− αkj(~xN)j − · · ·− αk,n−m(~xN)n−m . (13)

Note that this expression can be found in the final tableau of the Simplex
procedure. If (~xB)k is an integer variable and we assume that βk is not an
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integer, the partitioning of βk into the integer and fractional components is

βk = [βk] + fk , 0 6 fk 6 1 . (14)

Suppose we wish to increase (~xB)k to its nearest integer, ([β] + 1). Based
on the idea of suboptimal solutions we may elevate a particular nonbasic
variable, say (~xN)j

∗, above its bound of zero, provided αkj∗, as one of the
element of the vector ~αj∗, is negative. Let ∆j∗ be amount of movement of
the non basic variable (~xN)j∗, such that the numerical value of scalar (~xB)k is
integer. Referring to Equation (13), ∆j∗ can then be

∆f∗ =
1− fk
−αkj∗

(15)

while the remaining nonbasic stays at zero. After substituting (15) into (13)
for (xN)j∗ and taking into account the partitioning of βk given in (14), we
obtain (~xB)k = [β] + 1 . Thus, (~xB)k is now an integer. Clearly, a nonbasic
variable plays an important role to integerize the corresponding basic variable.
Therefore, the following result is necessary in order to confirm that there
must be a non-integer variable to work with in the integerizing process

Theorem 1 Suppose the problem in Equation (12) has an optimal solution,
then some of the nonbasic variables (~xN)j, j = 1, . . . ,n , must be non-integer
variables.

Proof: Solve the problem using continuous of slack variables (which are
non-integer, except in the case of equality constraint). If we assume that the
vector of basic variables ~xB consists of all the slack variables then all integer
variables would be in the nonbasic vector ~xN and therefore integer valued.

The other components, (~xB)i6=k, of vector (~xB) will also be affected as the
numerical value of the scalar (~xN)j∗ increases to ∆j∗. Consequently, if some
element of vector αj∗, that is, αj∗ for i 6= k , are positive, then the corre-
sponding element of ~xB will decrease, and eventually may pass through zero.
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Due to the non-negativity restriction a minimum ratio test is needed in order
to see what is the maximum movement of the nonbasic (~xN)j∗ such that all
components of ~x remain feasible. This ratio test includes two cases:

1. a basic variable (~xB)i 6=k decreases to zero (lower bound) first;

2. the basic variable (~xB)k increases to an integer.

Specifically, corresponding to each of these two cases above, one would
compute

θ1 = min
i6=k|αj∗>0

[
βi

αj∗

]
and θ2 = ∆j∗.

How far one can release the nonbasic (~xN)j∗ from its bound of zero, such that
vector ~x remains feasible, depends on the ratio test

θ∗ = min(θ1, θ2). (16)

If θ∗ = θ1 , one of the basic variable (~xB), i 6= k , will hit the lower bound
before (~xB)k becomes integer. If θ∗ = θ2 , the numerical value of the basic
variable (~xB)k will be integer and feasibility is still maintained. Analogously,
we would be able to reduce the numerical value of the basic variable (~xB)k
to its closest integer [βk]. Consider the movement of a particular nonbasic
variable, ∆, as expressed in Equation (15). The only factor that one needs
to calculate is the corresponding element of vector ~α. A vector ~αj can be
expressed as ~αj = B−1~aj , j = 1, . . . ,n −m . Therefore, in order to get a
particular element of vector ~αj we should be able to distinguish the corre-
sponding column of matrix [B]−1. Suppose we need the value of element ~αkj∗,
letting ~vTk be the kth column vector of [B]−1, we then have

~vTk = ~eTkB
−1, (17)

subsequently, the numerical value of

αkj∗ = v
T
kB

−1. (18)

In Linear Programming terminology the operation conducted in Equations (17)

and (18) is called the pricing operation. The vector of reduced costs ~dj is
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used to measure the deterioration of the objective function value caused
by releasing a nonbasic variable from its bound. Consequently, in deciding
which nonbasic should be released in the integerizing process, the vector ~dj
must be taken into account such that deterioration is minimized. Recall
that the minimum continuous solution provides a lower bound to any integer
feasible solution. Nevertheless, the amount of movement of particular nonbasic
variable as given in Equation (15) depends in some way on the corresponding
element of vector ~αj. Therefore, the deterioration of the objective function
value due to releasing a nonbasic variable (~xN)j∗ so as to integerize a basic
variable (~xB)k may be measured by the ratio |dk/αkj∗| where |a| means the
absolute value of scalar a. In order to minimize the deterioration of the
optimal continuous solution we then use the following strategy for deciding
which nonbasic variable may be increased from its bound of zero, that is,

min
j

{∣∣∣∣∣ ~dk~αkj∗

∣∣∣∣∣
}

, j = 1, . . . ,n−m . (19)

From the ‘active constraint’ strategy and the partitioning of the constraints
corresponding to basic (B), superbasic (S) and nonbasic (N) variables we
write (

B S N

I

) ~xB
~xS
~xN

 =

(
~b

~bN

)
(20)

B~xB + S~xS +N~xN = ~b and ~xN = ~bN. (21)

The basis matrix B is assumed to be square and nonsingular, we get

~xB = ~β−W~xs − α~xN (22)

with ~β = B−1~b , W = B−1S , α = B−1N .

Expression (21) indicates that the nonbasic variables are being held equal
to their bound. It is evident through the ‘nearly’ basic expression of Equa-
tion (22), the integerizing strategy discussed previously, designed for the
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problem can be implemented. Particularly, we would be able to release a
nonbasic variable from its bound, Equation (21), and exchange it with a
corresponding basic variable in the integerizing process, although the solution
would be degenerate.

Currently, we are in a position where a particular basic variable, (~xB)k is
being integerized, thereby a corresponding nonbasic variable, (~xN)j∗, is being
released from its bound of zero. Suppose the maximum movement of (~xN)j∗
satisfies θ∗ = ∆j∗ such that (~xB)k is integer valued to exploit the manner of
changing the basis, we would be able to move (~xN)j∗ into B (to replace (~xB)k)
and integer-valued (~xB)k into S in order to maintain the integer solution. We
now have a degenerate solution since a basic variable is at its bound. The
integerizing process continues with a new set [B,S]. In this case, eventually
we end up with all of the integer variables being superbasic. ♠

6 The algorithm

After solving the relaxed problem, the procedure for searching for a suboptimal
but integer feasible solution from an optimal continuous solution is as follows.
Let x = [x] + f , 0 6 f 6 1 , be the (continuous) solution of the relaxed
problem, [x] is the integer component of non-integer variable x and f is the
fractional component.

1. Get row i∗ the smallest integer infeasibility, such that δi∗ = min(fi, 1−
fi).

2. Calculate vTi∗ = e
T
i∗B

−1 (a pricing operation)

3. Calculate σij = v
T
i∗aj with j = argminj {|dj/σij|}

(a) For nonbasic j at lower bound:

• if σij < 0 and δi∗ = fi calculate ∆ = (1− δi∗)/−σij;
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• if σij > 0 and δi∗ = 1− fi calculate ∆ = (1− δi∗)/σij;

• if σij < 0 and δi∗ = 1− fi calculate ∆ = δi∗/−σij.

(b) For nonbasic j at upper bound:

• if σij < 0 and δi∗ = 1− fi calculate ∆ = (1− δi∗)/−σij;

• if σij > 0 and δi∗ = fi calculate ∆ = (1− δi∗)/σij;

• if σij > 0 and δi∗ = 1− fi calculate ∆ = dδi∗/σij;

• if σij < 0 and δi∗ = fi calculate ∆ = δi∗/−σij.

(c) Otherwise go to next non-integer, nonbasic or superbasic j (if
available). Eventually the column j∗ is to be increased from lb or
decreased from ub. If none, go to next i∗.

4. Calculate αj∗ = B
−1αj∗ , that is, solve Bαj∗ = αj∗ for αj∗.

5. Ratio test: there would be three possibilities for the basic variables in
order to stay feasible due to the releasing of nonbasic j∗ from its bounds.

• If j∗ lower bound, let

A = min
i ′ 6=i∗|αij∗>0

[
xBi ′ − li ′

αij∗

]
, B = min

i ′ 6=i∗|αij∗<0

[
ui ′ − xB ′i
−αij∗

]
,

and C = ∆ . Then the maximum movement of j∗ depends on
θ∗ = min(A,B,C)

• If j∗ upper bound, let

A ′ = min
i ′ 6=i∗|αij∗<0

[
xBi ′ − li ′

αij∗

]
, B ′ = min

i ′ 6=i∗|αij∗>0

[
ui ′ − xB ′i
−αij∗

]
,

and C ′ = ∆ . Then the maximum movement of j∗ depends on
θ∗ = min(A ′,B ′,C ′).

6. Exchanging basis for the three possibilities.
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(a) If A or A ′,

• xBi ′ becomes nonbasic at lower bound li ′ ,

• xj∗ becomes basic (replaces xBi ′ ),

• xi∗ stays basic (non-integer).

(b) If B or B ′,

• xBi ′ becomes nonbasic at upper bound ui ′ ,

• xj∗ becomes basic (replaces xBi ′ ),

• xi∗ stays basic (non-integer).

(c) If C or C ′,

• xj∗ becomes basic (replaces x∗i ),

• xi∗ becomes superbasic at integer valued.

7. Repeat from step 1.

7 Computational results

The planning horizon covers every three months, that is, T ={1, 2, 3, 4}.
After we surveyed the locations, we found out that the market situation for the
eight fish processed products could fit within three possible situations, good,
fair and poor, with associated probabilities of 0.30, 0.50 and 0.20 respectively.
Nevertheless, the method addressed by Mawengkang and Suherman [3] could
be used in order to get an efficient number of scenarios. The data of the
problem are described in Table 1 through to Table 8.

Data for production cost for each fish processed product, cost for holding
products in inventory in each period and the cost to purchase from outside in
order to meet the demand are shown in Table 2. Table 3 presents the cost
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Table 1: Upper bound for additional resources.
Period Machine 1 Machine 2 Machine 3

1 300 300 200
2 300 300 200
3 250 300 200
4 200 250 250

incurred for additional resources and capacity of resource in each machine.
The upper bound for additional resources can be found in Table 1.

The workforce needed to produce each fish product for the whole period
is given in Table 5. Table 4 gives the cost for hiring workforce. Table 6
shows resources needed to produce each fish product in each source (machine).
The computational results, presented in Table 8, describes the quantity of
each product to be produced. Additional resources needed, and the plan for
workforce are given in Table 7.

8 Conclusions

This article developed a two stage recourse model for the production plan-
ning problem of a fish processing industry in a coastal area with stochastic
demand. The model is adequate for solving the planning problem faced by
the management of the industry. The model estimates the number of workers
which is very useful for the industry so they will be able to schedule the local
people. We also propose an algorithm for solving the mixed integer stochastic
programming problem.
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Table 3: Additional resource cost and capacity of resource.
Sources Additional resource cost Capacity of resource available

(idr/ton) (ton)
Period Period

1 2 3 4 1 2 3 4
M1 45600 45800 45800 45900 20000 20000 20000 19000
M2 34300 34600 34600 34700 18000 18000 19000 17000
M3 32200 32300 32300 32500 21000 20000 21000 20000

Table 4: Cost for workforce (idr million/man-period).
Cost notation Period

1 2 3 4
µ 22000 22500 22500 23000
γ 24000 24000 25500 26000
δ 25000 25000 25600 27000

Table 5: Workforce needed to produce each product.
Product 1 2 3 4 5 6 7 8

Work force (man/ton) 6 12 24 24 24 20 15 8

Table 6: Resources needed for each product (ton).
Sources j

1 2 3 4 5 6 7 8
Machine 1 6 5 6 8 7 6 5 9
Machine 2 4 4 5 6 6 5 5 8
Machine 3 5 3 5 6 6 5 5 7
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Table 7: Additional resource and workforce plan.
Period Additional resources Workforce plan

to be used (ton)
Resource machines Policy
1 2 3 Reg. Add. Lay off

workforce workforce
1 12.20 9.80 8.65 38 35 0
2 12.20 9.80 8.75 35 0 0
3 12.20 9.70 8.65 35 0 0
4 16.95 13.80 12.55 47 12 0

Table 8: The number of each product to be produced (ton).
Product Period

1 2 3 4
1 25000 25000 36000 30000
2 90000 90000 90000 95000
3 20000 20000 20000 30000
4 20000 20000 20000 30000
5 20000 20000 20000 30000
6 20000 20000 20000 30000
7 20000 20000 20000 30000
8 20000 20000 20000 30000
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