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electromagnetic surface scattering simulations

M. Ganesh1 S. C. Hawkins2

(Received 26 July 2007; revised 31 October 2007)

Abstract

Simulation of electromagnetic waves scattered by a connected three
dimensional non-convex obstacle at medium frequencies (where the
size of the obstacle is 10 to 100 times the incident wavelength) requires
a non-asymptotic approach. Standard boundary element schemes at
such frequencies require millions of unknowns. However, recently de-
veloped high-order algorithms require only tens of thousands of un-
knowns at medium frequencies for a class of three dimensional ob-
stacles. At such frequencies we use a sparse approximation to the
scattering matrix and so iterative solvers are required. We describe
an efficient scheme to solve the associated linear systems using sparse
approximate inverse preconditioners. The sparse preconditioners de-
veloped in this work facilitate efficient solutions of complex dense lin-
ear systems arising in electromagnetic scattering simulations.
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1 Introduction

Ganesh and Hawkins [9, 10] recently developed high-order surface integral
equation Galerkin schemes for simulation of electromagnetic waves and radar
cross section computations for a class of three dimensional obstacles. In these
algorithms, spectrally accurate approximations of various terms in a surface
integral reformulation of the scattering problem, combined with an efficient
matrix assembly system, lead to complex dense linear systems with fewer
unknowns than are obtained using industrial standard boundary element
(method of moments) algorithms such as the Fast Illinois Solver Code [15].

Although the scattering matrices obtained from discretizing surface inte-
gral operators are typically dense, due to the choice of orthonormal basis func-
tions, the matrices obtained using the algorithms of Ganesh and Hawkins [9,
10] can be approximated to sufficiently high accuracy using a sparse ma-
trix [11]. Such sparse approximations facilitate reduced storage and hence
allow simulations at higher frequencies. Ganesh and Hawkins [9, 10] mainly
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solved electromagnetic scattering linear systems using a direct method, but
when sparse approximations are used it is efficient to use an iterative solver.
For an efficient iterative solution, it is essential to have a good preconditioner.

Ganesh and Hawkins [11] described a preconditioning technique based
on an incomplete LU -factorisation (ilu) of a sparse approximation to the
scattering matrix. A disadvantage of ilu based methods is that they are
challenging to implement in parallel. A parallel implementation is essential
for higher frequency problems because, due to the higher number of un-
knowns involved, the ilu factorisation becomes increasingly expensive. Also,
since the number of non-zeros in the ilu factorisation increases due to fill-in,
storage difficulties are encountered when the ilu factorisation is performed
in serial.

Our focus in this work is on so called medium frequency problems, where
the frequency is so high that the resonance region techniques (such as bound-
ary element methods) require tremendous computing power, but the fre-
quency is too low for asymptotic techniques to be applied. Asymptotic
schemes are yet to be developed for connected non-convex three dimensional
obstacle electromagnetic scattering. (For the convex case, the asymptotic
ansatz described by Melrose and Taylor [13] is useful.) For medium fre-
quency three dimensional non-convex scattering—which is considered to be
the current challenge for computational electromagnetics—we are not able to
apply the serial ilu based preconditioning techniques described by Ganesh
and Hawkins [11], because the storage required by the preconditioner is more
than that available to any single cpu in a standard cluster computing envi-
ronment, which consists of at most 2 GB to 4 GB memory per processor.

Thus, we are motivated to develop a sparse approximate inverse precondi-
tioner [12, 1, 5, 4] for our problem. The advantages of a sparse approximate
inverse preconditioner are that (i) the computation of the sparse approxi-
mate inverse can be performed in parallel, and (ii) matrix-vector products
with the sparse approximate inverse can be performed in parallel. Sparse
approximate inverse preconditioners of various types have been compared
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for electromagnetic scattering problems involving linear systems with a few
thousand unknowns [1, 5, 4], and for linear systems with about one million
unknowns, solved using a fast multipole method [6, 3]. Section 3 describes
how we compute a sparse approximate inverse by solving a minimising prob-
lem in the Frobenius norm. The crux of the problem is in how to select a
sparsity pattern for the sparse approximate inverse. Section 4 describes a
technique to select the sparsity pattern that can be applied in parallel with-
out communication, and allows the number of non-zeros in each column of
the preconditioner to be specified. Section 5 demonstrates that using this
sparse approximate inverse preconditioner we can solve three dimensional
non-convex medium frequency electromagnetic scattering problems using a
tangential variant of the algorithm of Ganesh and Hawkins [9, 10] with sev-
eral tens of thousands of unknowns. Such simulations are intractable without
preconditioning.

2 Problem formulation

The time-harmonic electromagnetic field induced in free space by an incident
wave (with frequency ω and wavelength λ so that ωλ is the speed of light)
impinging on the surface ∂D of a three dimensional perfect conductor D
satisfies the Maxwell equations exterior to the obstacle and the Silver–Müller
radiation condition. We reformulate this exterior problem so that the major
part of the computation is reduced to approximation of the vector surface
potential w that solves the second kind integral equation [8, Theorem 4.19,
p. 126]

w(x) +Mw(x) = f(x) , x ∈ ∂D , (1)

whereM is the magnetic dipole operator, and f is derived from the incident
wave through the boundary condition.

Discretizing the surface integral equation (1) using a tangential variant of
the algorithms by Ganesh and Hawkins [9, 10] with a carefully chosen tan-
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gential spectrally accurate basis, and sparsifying, leads to the linear system

Ax = b , (2)

where A is an n × n sparse matrix obtained by discretizing I +M , and x
and b are discretizations of w and f respectively.

For our medium frequency scattering applications, the linear system (2)
may have several tens of thousands of unknowns. Thus it is necessary to
work in parallel, and distribute the storage of A across several computer
nodes because of memory limitations on a single computer node. To take
advantage of the distributed storage and the sparsity of A, it is convenient
to use an iterative solver such as the Generalized Minimal Residual (gmres)
algorithm [14]. Although (1) is a second kind integral equation, poor condi-
tioning arises due to complexity in the surface of the scatterer and due to the
frequency of the incident wave. Thus it is necessary to use a preconditioner
to accelerate the convergence of the iterative solver. Here we consider the
right-preconditioned linear system

AMy = b , x = My , (3)

where M is the preconditioner.

We solve the preconditioned linear system (3) using gmres [14] and we
compute the preconditioner M using a sparse approximate inverse technique,
because the sparse approximate inverse can be computed in parallel and
stored using distributed storage.

3 A sparse approximate inverse

preconditioner

The sparse approximate inverse preconditioner M is computed as the min-
imiser of

‖AM − I‖F (4)
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amongst all matrices with a particular a priori selected sparsity pattern. The
cost of computing the preconditioner is controlled by regulating the sparsity
of M . If ‖AM − I‖F is small, then one expects the conditioning of AM to
be good, leading to fast convergence of the gmres iterations.

Expanding the Frobenius norm in (4) we have

‖AM − I‖2F =
n∑

i=1

‖Ami − ei‖22 ,

where M = [m1, . . . ,mn] and ei is the ith Euclidean vector. Thus minimis-
ing (4) decouples into n independent least squares problems:

minimise ‖Ami − ei‖2 (5)

subject to the prescribed sparsity pattern for mi. These n least squares
problems are independent of each other and hence facilitate a naturally par-
allel implementation (without any communication) to compute the precon-
ditioner M . Let Si be a vector indexing the nonzero entries in mi. Then

‖Ami − ei‖2 = ‖A(:, Si)mi(Si)− ei‖2 .

Depending on the sparsity of A, some of the rows in A(:, Si) may be zero.
Let Ti be a vector indexing the nonzero rows in A(:, Si). Then

‖Ami − ei‖2 = ‖A(Ti, Si)mi(Si)− ei(Ti)‖2 , (6)

and we solve the least squares problem (5) by solving the reduced problem (6)
with matrix A(Ti, Si) which has size |Ti| × |Si| .

We solve the least squares problems (6) in parallel using a dense QR-
factorisation of A(Ti, Si), which has complexity O(|Ti||Si|2). Thus the com-
plexity of the least squares solve will be reduced if A is replaced by an
approximation to A that is sparser than A, because |Ti| typically depends on
the sparsity of A.
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4 Selecting sparsity pattern

The challenge in sparse approximate inverse computations is selecting a suit-
able sparsity pattern for M , because in general one does not know the spar-
sity or structure of A−1. The sparsity pattern of A is often used to suggest
a sparsity pattern for M [7].

In the problems we consider, the sparsity pattern of A has too many
non-zeros to be used as a sparsity pattern for M . Thus we obtain a sparsity
pattern for M from a sparse approximation to A [1, 12].

Simple algebraic strategies to obtain a sparse approximation to A include
thresholding [12] and selection of the largest entries in each column [1]. Other
sparsification strategies developed for matrices that arise from boundary ele-
ment methods, based on topological information or geometric information [5],
are not applicable for matrices arising from our mesh free, high order algo-
rithm.

Ganesh and Hawkins [11] used a thresholding technique that can be im-
plemented in parallel without communication. This technique often leads to
expensive sparse approximate inverse computations because one cannot spec-
ify the number of non-zeros a priori. We want to strictly limit the number
of non-zeros so that the cost of computing the sparse approximate inverse is
limited. Therefore, we obtain a sparse approximation D = (dij) to A = (aij)
by combining some of the ideas above in a two-part process:

dij =

{
aij , if |aij| > τ maxbi |abij| and i ∈ Vj,

0 , otherwise,
(7)

where Vj indexes the k largest elements in column j of A. Thus in each col-
umn we retain the k largest elements, provided they are above the threshold.
The threshold is useful from a computational point of view even when the
column contains more than k elements larger than the threshold, because
it limits the number of elements that must be sorted in order to select the
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k largest. This substantially reduces the time needed to compute the pre-
conditioner. The thresholding part of the strategy (7), which follows Ganesh
and Hawkins [11], can be performed in parallel without communication when
A and D are stored by columns.

Combining the ingredients above, we construct our preconditioner M as
follows.

1. Compute B ≈ A using thresholding (7) with tolerance εA and kA ele-
ments per column.

2. Compute P ≈ A using thresholding (7) with tolerance εM and kM ele-
ments per column.

3. Compute sparse approximate inverse M of B using (4)–(6) where the
sparsity pattern for M is chosen to be the sparsity pattern of P .

In our code we overwrite P with M so that no extra storage is used for P .

5 Numerical results

We demonstrate our preconditioner with scattering simulations for a perfectly
conducting scatterer that was used to demonstrate the accuracy of high-order
methods [9, 10]. This fountain shaped scatterer is illustrated in Figure 1.
This object is considered to be challenging for scattering simulations because
it possesses concave regions. Since the exact scattered field and far field
are not known for plane wave scattering by the fountain shaped obstacle,
we give results for scattering of an incident wave generated by a magnetic
dipole contained inside the obstacle. For this problem we are able to give
exact errors in the computed far field, and thus verify the accuracy of our
computed solution to (3). In our tables we give the relative error in the
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Figure 1: Fountain shaped obstacle.

far field, measured in the infinity norm. In practice the infinity norm is
computed at more than 1300 points in the far field.

In our experiments we use a parallel version of our algorithm written in
Fortran. Distributed storage is used for the matrices A and M . The least
squares solve (6) is performed using zgeqrf and other routines from the
lapack library [2]. In all experiments we use gmres [14] restarted after
1000 iterations. Due to the high order nature of the discretization of (1),
we expect several digits accuracy in our computed far field. Therefore we
terminate the iterations when the residual norm has been reduced by a factor
of 10−8, and we correspondingly choose the thresholding parameters for the
preconditioner to be εM = εA = 10−8 .

Due to the high cpu time required for medium frequency electromagnetic
scattering simulations, we first demonstrate the parameter dependencies of
the preconditioner for a relatively small problem with 16 560 unknowns sim-
ulating scattering by a fountain shaped obstacle with diameter 16 times the
incident wavelength. The number of gmres iterations and cpu time using
4 × 2 GHz single core Opteron cpus are displayed for several values of kA

and kM in Table 1. We see that the quality of the preconditioner, as indicated
by the number of gmres iterations and the cpu time required for the solve,
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Table 1: Investigation of parameters for fountain obstacle with diameter
16 wavelengths using 16 560 unknowns. Sparse approximate inverse precon-
ditioner computed in parallel using 4× 2 GHz single core Opteron cpus.

preconditioner cpu time
kM kA assembly solve iterations rel. error
50 50 197.1 s 76.6 s 604 5.55e-6
50 100 326.1 s 80.8 s 575 5.55e-6
50 200 663.3 s 81.9 s 589 5.55e-5

100 100 339.7 s 11.5 s 128 5.56e-6
100 200 643.5 s 10.5 s 114 5.55e-6

200 200 693.7 s 1.2 s 1 5.55e-6

Table 2: Convergence of gmres for fountain obstacle at medium frequen-
cies with diameter between 30 and 40 times the wavelength. Sparse approxi-
mate inverse preconditioner computed in parallel using 16× 2 GHz dual core
Opteron cpus.

preconditioner cpu time
size unknowns kM = kA assembly solve iterations rel. error
30λ 51840 100 1.4 h 0.9 h 2798 3.75e-8
40λ 72960 200 4.8 h 1.0 h 2150 6.03e-5

increases with kM and has little dependence on kA. In contrast, the cost of
constructing the preconditioner increases approximately linearly with kA but
in these experiments has little dependence on kM . Thus the best results are
obtained with kA = kM .

The results in Table 1 show an inverse relationship between the cost of
assembling the preconditioner and the number of gmres iterations required
to reduce the residual norm by a fixed amount. Minimising the total time to
obtain a solution is therefore a trade off between the cost of assembling the
preconditioner and the cost of performing the gmres iterations. In the case
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of multiple linear systems with one matrix but many right hand sides, the
preconditioner can be computed and stored, whilst gmres iterations must
be performed for each right hand side. This consideration is a key factor in
the trade off. Such multiple linear systems arise, for example, in monostatic
radar cross section computations.

Next we demonstrate the preconditioner for challenging problems sim-
ulating scattering by the fountain shaped obstacle at medium frequencies
where the diameter is between 30 and 40 times the incident wavelength, with
up to 72 960 unknowns. The number of gmres iterations and cpu time us-
ing 16 × 2 GHz dual core Opteron cpus are displayed in Table 2. In these
experiments, based on the results for the smaller 16 wavelength problem, we
use kA = kM . For the 30 wavelength problem kA = kM = 100 is sufficient for
fast convergence of gmres. For the higher frequency 40 wavelength problem
a better choice is kA = kM = 200 , for which the higher assembly time is
more than offset by the reduced solve time.

6 Conclusions

Sparse linear systems derived from dense linear systems arising in electro-
magnetic scattering simulations with several tens of thousands of unknowns
are solved iteratively using a sparse approximate inverse preconditioner im-
plemented in parallel, with sparsity pattern chosen a priori using the two part
process described in this work. We have demonstrated the preconditioner by
simulating electromagnetic scattering by a non-convex object with diame-
ter forty times the wavelength using multiple processors for preconditioner
assembly and for matrix vector products. Iterative solution of such linear
systems is intractable without preconditioning, and are hard to precondition
using factorisation-based preconditioners, due to the difficulty in computing
these preconditioners in parallel.

This work is the first stage of a project to solve medium frequency scat-
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tering problems using sparsification combined with a high order spectral
Galerkin method. Efficient implementation relies on the ability to determine
a priori the sparsity pattern of the matrix A. Such pattern selection is well
established for wavelet based methods but the corresponding theory for the
spectrally accurate method is a future goal of the project.
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