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Abstract

We propose a novel joint pricing and lot sizing model to enable
manufacturers plan production and pricing. These types of models
have proven to be very popular and are collectively known as the
Joint Pricing and Lot sizing Models. We include a discount factor
in our model to increase profit for the manufacturer. Our proposed
model relies on the fact that demand influences production cost indi-
rectly, while it is dependent on price and the discount offered. By con-
sidering the form of demand and production cost, it is apparent that
the presented model is a Signomial Geometric Programming problem.
We obtain optimal solutions for price, lot size and discount factor by
applying the modified transformation method of geometric program-
ming. Numerical examples, which include sensitivity analysis of the
objective function and parameters, illustrate our model.
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1 Introduction

Since pricing and lot sizing decisions are entwined in the production envi-
ronment, models which are based on jointly determining optimal values for
prices and lot size are extremely popular and they are collectively known as
Joint Pricing and Lot sizing Models (jplm). These models are also practical
and efficient because emphasis is placed simultaneously on production and
market demand. In contrast with classical epq (Economic Production Quan-
tity), in jplm demand is not fixed and could depend on price and production
cost. Several researchers have considered jplm where price depends on de-
mand over a planning horizon [2, 9, 11, 8]. They used the primal and dual of
Geometric Programming (gp) problems to determine the optimal price and
lot size. Beightler [3] and Duffin et al. [6] provide an extensive discussion
on the primal and dual (gp) problems. Many researchers also considered
the effects of different parameters on demand and cost in jplm, for example,
Freeland [7], Sajadi et al. [12] and Lee and Kim [11] considered the impact of
marketing expenditure on demand in addition to price, whereas Lee et al. [8]
considered the impact of reliability on demand in addition to price.

Quantity discount, as a popular tool of coordination mechanism, has also
been considered in supply chain work, notably by Chiang et al. [4]. Similar
approaches have been used by Corbett and de Groote [5], Viswanathan &
Wang [14] and Weng [15]. Note that the demand in these papers is unaffected
by the size of the discount and, when it is price sensitive, there is opportunity
for the manufacturer to decrease production costs and to increase revenue.
Abad [1] and Lee [10] included the quantity discount in their model when de-
mand is price sensitive. Quantity discount is not in itself sufficiently effective
without considering volume discount [14]. Therefore, here we assume that
the supplier gives quantity discount to a manufacturer while the manufac-
turer also offers volume discount on the product to customers. The quantity
discount is primarily offered with the intention of decreasing production cost
when production volume increases, thereby achieving reduction in produc-
tion cost. On the other hand the demand imposed on the manufacturer is
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sensitive to its price and discount, therefore demand increases by increas-
ing the size of the discount. This approach leads to more benefit for the
manufacturer.

In this article, unlike most models cited above, we present a jplm where
volume of production is allowed to be different from demand, which makes
it more realistic and distinguishes it from other models. We also consider
production, discount, setup and holding costs in our model. The holding cost
subsumes the costs associated with investing in inventory and maintaining
the physical investment in storage. The holding cost incorporates items such
as capital costs, taxes, insurance, handling, storage, shrinkage, obsolescence,
and deterioration. In our model, the holding cost is expressed in term of a
percentage of production cost [13, e.g.]. The optimal decision variables, that
is price, lot size, production volume and discount are obtained in closed form.

2 Notation and problem formulation

This section introduces the notation and formulation of our model. Here, we
state decision variables and input parameters, see Table 1, and assumptions
underlying our models.

2.1 Assumptions

Our proposed model is based on the following assumptions:

1. Parameters are deterministic and known in advance;

2. Shortages are not permitted;

3. The model is profitable;
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Table 1: decision variables and input parameters.
X Production volume (decision variable)
P price (decision variable)
d Discount (decision variable)
Q Lot size (decision variable)
A Setup cost ($/setup)
C The production cost per unit
k Scaling constant for demand (k > 0)
i Percentage of the inventory holding cost

per unit of production cost
α Price elasticity of demand (α > 1)
u Scaling constant for production cost (u > 0)
β Production volume elasticity of demand (0 < β < 1)
µ Discount elasticity of demand

(0 < µ < 1 , β(α− µ) < 1 , α− µ > 2)
D(P, d) Demand; for notational simplicity we let D ≡ D(P, d)

4. The demand is a function of price P which is similar to the demand
function introduced by Kim and Lee [9], this function depends on the
discount d according to

D(P, d) = kP−αdµ ; (1)

5. The supplier offers quantity discount to the manufacturer and the pro-
duction cost C is a function of production volume X according to

C = uX−β . (2)

3 The proposed model

In the proposed model, the net profit obtained by a manufacturer is a func-
tion of production volume, lot size, price and discount. The manufacturer’s
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objective function is similar to the objective function proposed by Abad [2]
and Lee [10]. However, we include a discount component d and production
volume X as new decision variables. The manufacturer’s objective function
is

Manufacturer’s Profit = Sales Revenue− Production Cost

−Discount Cost− Setup Cost− Holding Cost.

The above is expressed as a function of the decision variables as

Π(X,Q, P, d) = PX − CX − dX − AXQ−1 − 1/2iCQ ,

subject to X ≤ D = kP−αdµ , (3)

0 ≤ X,Q, P, d .

The constraint of the model indicates that production volume is not nec-
essarily equal to demand, as is commonly assumed. Note that the holding
cost which appears in (3) is the standard one used in inventory control mod-
els [13, e.g.]. The holding cost is expressed as a percentage of production cost
associated with the lot size, that is iCQ. This is further multiplied by 1/2
to obtain an average value due to the fact that lot size is declining uniformly
because of continuous demand. The optimal solution is obtained in the next
section.

3.1 The optimal solution

The proposed model is a Signomial problem in Geometric Programming
(gp) with one degree of difficulty. Since standard gp fails to guarantee
global optimality for any Signomial gp, we apply the method used by Lee
and Kim [9] to transform the Signomial gp problem into a Posynomial gp
problem. They assumed that there is a lower bound Π0 for the objective
function such that maximizing Π0 is equivalent to maximizing the objective



3 The proposed model C144

function. Therefore, the Signomial gp is transformed into a Posynomial gp
with an additional constraint and variable Π0:

max Π0 = min Π−1
0 ,

subject to 1 ≥ k−1Pαd−µX ,

1 ≥ uX−βP−1 + AP−1Q−1 + dP−1

+ 0.5iuP−1QX−(β+1) + Π0P
−1X−1 ,

0 ≤ Π0, X,Q, P, d . (4)

This Posynomial problem can be solved by its dual objective function. Ap-
pendix A provides details of the dual formulation and solution procedure.

Let λ,wij, i = 1, . . . , 5 and j = 1, 2 be the dual variables and define

δij =
wij
λ
. (5)

Note that δijs are the weights of the terms in the constraints (4) and they
are obtained in (22) of Appendix A where

∑5
i=1 δi2 = 1 and

∑5
i=1wi2 = λ .

The weights represent proportions of production cost δ12, setup cost δ22,
discount cost δ32, inventory holding cost δ42 and profit δ52 to the total sales
revenue. The following relations hold:

δ11 = k−1Pαd−µX , (6)

δ12 = uP−1X−β , (7)

δ22 = AP−1Q−1 , (8)

δ32 = P−1d , (9)

δ42 = 0.5iuP−1QX−β−1 , (10)

δ52 = P−1X−1Π0 . (11)

Solving (6) to (11) for the optimal solutions, we easily obtain

P ∗ = (ku−1/βδµ32δ
1/β
12 X−β)1/α−µ−1/β , (12)
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Q∗ = Aδ−1
22 P

−1 , (13)

d∗ = δ32P , (14)

X∗ = (uδ−1
12 P

−1)1/β , (15)

Π∗
0 = δ52PX . (16)

4 Sensitivity analysis

Manufacturers need to understand how varying key parameters affect the
optimal solutions, and where this helps them to improve their current policy.
In our model, sensitivity analysis estimates the effects of under/over estima-
tion of parameters on the optimal solution using the relationships between
parameters and variables. Our findings are listed below.

1. The estimates of the weights of the terms in the constraints (δij) is de-
termined from the input parameters. For example, if the proportion of
holding cost to sales revenue δ42 decreases, then proportion of produc-
tion cost to the sales revenue δ12 and proportion of profit to the sales
revenue δ52 will increase. Furthermore, the proportion of setup cost to
sales revenue δ22 will decrease. Also, if discount quantity elasticity µ
increases or price elasticity α decreases then proportion of discount cost
to the sales revenue, δ32, will increases.

Proof: These assertions are directly deduced from the following equa-
tions obtained from (5) and (23)–(28) in Appendix A:

δ12 − δ52 = (((β + 1)(α− µ)− 2))α−1(1− β)−1 , (17)

δ42 + δ12 = (α− µ− 1)α−1(1− β)−1 , (18)

δ42 + δ52 = (1 + β(−α + µ))α−1(1− β)−1 , (19)

δ32 = µα−1 , (20)
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δ22 = δ42 . (21)

♠

2. From the formula for R given in (37) of Appendix B, it follows that R
would increase if A, u or i increases. R also increases if k decreases.

Proof: This follows directly from (30) in Appendix B. ♠

3. If R > 0 , proportions of set up cost, δ22, and holding cost to sales
revenue, δ42, will increase and proportion of production cost to the
sales revenue, δ12, will decrease.

Proof: Let δ∗ij = δij + ∂δij . Using (5) and (23)–(28) we have

δ∗42 − δ42 =
w42 + ∂w42

λ+ ∂λ
− w42

λ

=
αJ−1R

λ(λ+ ∂λ)
.

If R > 0 , then δ∗42 − δ42 is positive which means δ∗42 > δ42 . Therefore,
based on finding 1, we obtain δ∗22 > δ22 and δ12 < δ∗12 . ♠

4. If the proportion of set up cost to the sales revenue δ22 decreases then
price P and discount d will increase and production volume X and lot
size Q will decrease.

Proof: These assertions are direct results from (12) to (15). ♠
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5 Numerical example

This section illustrates our model by presenting an example including a sen-
sitivity analysis of the optimal solution. Consider a manufacturer supplying
goods which are elastic (α > 1) with many substitutes in a very compet-
itive market. An example of this model would be a factory which supply
parts for a petrochemical industry. Let the production scenario be as fol-
lows. The holding cost constitute 50% of production cost where the pro-
duction cost is a function of production volume and is C = 0.2X−0.1. The
set up cost is set at 1.8 and the supplier offers 0.1 discount per production
unit. In addition, the demand function is set to D(P, d) = 5P−2.3d0.2. The
manufacturer would like to determine an optimal policy on lot size, produc-
tion volume, selling price and discount. We solve the proposed model by
following the procedure in Appendix A, which results in w∗

11 = 3.1 . The
other optimal weights are (w∗

12, . . . , w
∗
52) = (2.1, 1.7, 0.6, 1.7, 1), λ∗ = 7.1 ,

(δ∗11, δ
∗
12, δ

∗
22, δ

∗
32, δ

∗
42, δ

∗
52) = (1, 0.3, 0.2, 0.1, 0.2, 0.1). Using the weights, the

lower bound, Π0, is 0.7, the maximum profit of the manufacturer is 1.6 unit,
the selling price is $0.6 per unit, the production volume is 8 units per week
with 13 units lot sizes per two weeks, and the discount is $0.05. Limitations
on production equipments makes the manufacturer produce only 8 units per
week whereas his lot size is 13 for almost two working weeks. Even though
the manufacturer can choose the lot size equal to the production volume,
in an optimal solution the manufacturer obtains more profit (1.7 > 1.1) by
choosing a lot size greater than the production volume.

Consider the example when δ12 is underestimated to 0.15 instead of 0.3.
From (17) to (19) we have (δ22, δ42, δ52) = (0.38, 0.38, 0.00024), and conse-
quently applying (12) to (15) (P ∗, Q∗, X∗, d∗) = (1.3, 3.8, 1.8, 0.1). Observe
that an underestimated δ12 results in a higher price and discount and lower
lot size and production volume.

Suppose the setup cost increases to two and the other parameters do not
change. A manufacturer is interested to know what is the effect of this param-
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eter on the optimal solution. From (30) to (37) we obtain J = 0.61 , ∆A/A =
0.11 , R = 0.097 , (w12, w22, w32, w42) = (2.2, 1.8, 0.6, 1.8), λ = 7.5 and the
corresponding estimated solution is (P ∗, Q∗, X∗, d∗) = (0.6, 14.5, 8.2, 0.05).
The policy implication is that the price and discount should remain almost
the same but the lot size should be increased by about 1.1 units and pro-
duction volume should be decreased by about 0.3 units. This new suggested
policy is essentially optimal without solving the problem again.

The effects of changes in parameters on the optimal solution are also seen
in the given example. Assume inventory holding cost rate decreases to 0.1 in-
stead of 0.5. According to finding 4 we expect price and discount to decrease
and production volume and lot size to increase. This is achieved using (12)
to (15) from which we obtain (P ∗, Q∗, X∗, d∗) = (0.4, 34.4, 17.4, 0.03).

6 Conclusion

Discount in jplm is an effective tool to increase manufacturer’s profit. We
made two assumptions: demand is affected by the size of discount, and pro-
duction cost decreases when production volume increases. Our proposed
model is more realistic than the state-of-the-art models since market de-
mand is related to production volume. It is a Signomial problem and was
solved using standard Geometric Programming. We also performed sensitiv-
ity analysis to investigate the effect of changes of parameters on the optimal
solution.

There is much scope to extend the present work. For example, parame-
ters and decision variables can be considered random or even fuzzy. Other
parameters of a distributed system which were not included in this article,
such as production rate or shortage cost, could be added to the model. Fi-
nally, the proposed model can be made more realistic by extending it to cases
where multiple products are being sold in several markets.
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A The dual

The model described in (3) is a Posynomial gp problem with one of degree
of difficulty. Its dual is

maxF (w11) =

[
1

w0

]w0
[
k−1

w11

]w11
[
u

w12

]w12
[
A

w22

]w22

×
[

1

w32

]w32
[

0.5iu

w42

]w42
[

1

w52

]w52

λλ ,

subject to w0 = 1 ,

−w0 + w52 = 0 ,

αw11 − w12 − w22 − w32 − w42 − w52 = 0 ,

−µw11 + w32 = 0 ,

w11 − βw12 − (β + 1)w42 − w52 = 0 ,

w22 − w42 = 0 . (22)

The first constraint is the Normality Condition and the others are the Or-
thogonally Conditions [3, 6]. When the dual variables are rewritten in terms
of one dual variable, w11, the following equations resulted:

w0 = 1 , (23)

w12 =
[
((β + 1)(α− µ)− 2)(1− β)−1w11

]
+ 1 , (24)

w22 = w42 =
[
(−βα + βµ+ 1)(1− β)−1w11

]
− 1 , (25)

w32 = µw11 , (26)

w52 = 1 , (27)

λ = αw11 . (28)

In order for the dual to have a feasible solution, we make the additional
assumptions that β(α − µ) < 1 and α − µ > 2 . By substituting the dual
variables from (23) to (28) into F (w11) and then taking the logarithm, we
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obtain a concave programming problem:

max logF (w11) = −w11 log kw11 − w12 logw12u
−1 − w22 logw22A

−1

− w32 logw32 − w22 logw22(0.5iu)−1 + λlog λ . (29)

Note that (29) can be shown to be a concave function over all values of wi2 >
0 , i = 1, . . . , 5 ,

∑5
i=1wi2 = λ . Such a problem can be solved by any line

search technique [12]. According to the duality theory of gp, F ∗ = 1/max Π
and this is then used to obtain the optimal solution from (12) to (15).

B Dual sensitivity

Here we evaluate the effects of percentage changes in input parameters (ex-
cluding α, β and µ) on the dual variables. This approach employed is similar
to Lee [10]. The effects are calculated as follows:

∂w11 = J−1R , (30)

∂w12 =
[
((β + 1)(α− µ)− 2)(1− β)−1

]
J−1R , (31)

∂w22 = ∂w42 =
[
(−βα + βµ+ 1)(1− β)−1

]
J−1R , (32)

∂w32 = µJ−1R , (33)

∂w52 = ∂w0 = 0 , (34)

∂λ = αJ−1R , (35)

J =
1

w∗
11

+

[
((β+1)(α−µ)−2)

(1−β)

]2
w∗

12

+

[
(−βα+βµ+1)

(1−β)

]2
w∗

22

+
µ2

w∗
32

+

[
(−βα+βµ+1)

(1−β)

]2
w∗

42

− α2

λ∗
, (36)

R =
∆k−1

k−1
+

[
((β + 1)(α− µ)− 2)∆u

(1− β)u

]
+

[
(−βα + βµ+ 1)∆A

(1− β)A

]
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+

[
(−βα + βµ+ 1)∆0.5iu

(1− β)0.5iu

]
. (37)

J is the Jacobian of the dual objective function F (w11) and ∆R/R repre-
sents the percentage change in a primal problem coefficient R. Note that
if w0, w52 are fixed, then ∂w0, ∂w52 will equal zero. Therefore, we readily
compute the new dual variables λ = λ∗ + ∂λ , wij = w∗

ij + ∂wij and then use
these to calculate the weights, δij, and the associated primal variable values.
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