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Abstract

Magnetic resonance imaging is a popular non-invasive technique
for investigating soft tissue structures within the human body. Many
design methods now exist for their principle hardware components,
such as the radio frequency (rf) coils. A popular rf coil type is the
rf phased array, comprised of many closely spaced coils covering a
large volume. A time harmonic inverse method is presented for the
theoretical design of rf phased arrays. The method allows any ar-
ray size to be considered where the focus is on optimal coil geometry
and position of individual coils. An ill-conditioned integral equation
is solved using a regularisation strategy in which the error between
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induced and target magnetic fields is minimised along with an addi-
tional constraint related to the curvature of the coil windings. The
method is demonstrated for a number of design considerations and
includes the ability to focus the rf field to arbitrary locations within
the coil volume. The effect of the choice of magnetic field polarisation
direction is also investigated using the model.

1 Introduction

Magnetic resonance imaging (mri) scanners use a combination of three main
hardware components to acquire an image: a primary magnet, gradient coils,
and radio frequency (rf) coils [5, p.137, e.g.]. rf coils have two modes
of operation: transmit and receive. In transmit mode they must induce a
homogeneous magnetic field (perpendicular to the primary field) such that
all locations within the sample to be imaged experience an equal weighting
of rf energy. In receive mode they must pick up signals from all locations
with an equal gain and achieve this with a high signal-to-noise ratio (snr).
rf phased arrays are comprised of many closely spaced coils covering a large
volume. This affords high snr and resolution over a large field of view, yet
with no increase in imaging time [9]. In rf phased array coil design, it is
typical to take established coil structures, such as simple loops, and optimise
the amplitudes and phases of the drives of each coil [7, e.g.]. Other methods
concentrate more on optimising with respect to coil placement [4, e.g.].

The importance of coil geometry in obtaining optimal image quality and
snr is stressed by Sodickson et al. [10], who also suggest a possible role for
the target field method in coil array design. The target field method is well
established in gradient coil design [11]. It is an inverse method whereby
one specifies a desired magnetic field within some region of interest (the
dsv) and then seeks an appropriate coil current density solution. Forbes
and Crozier [3] extended the method using a Fourier series representation for
the current density such that finite length coils are considered without ap-
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proximation. They used a regularisation strategy to solve an ill-conditioned
integral equation.

The design of high frequency rf coils is considered by Lawrence et al. [6],
who use a full wave approach involving time harmonic Green’s functions to
obtain induced field expressions. While et al. [12] extended this work by
considering a more general current density and a regularisation strategy that
allows a trade-off between field accuracy and coil simplicity. The important
cases of rf shielding and patient loading are considered by While et al. [13,
14]. The method is adapted to the design of rf phased array coils by While et
al. [15]. The current article presents new results using this adapted method,
which is revisited briefly in the following section. Example coil winding
solutions and their corresponding induced fields are discussed in Section 3.
A variety of phased array design considerations are investigated, including
array size, axial and radial asymmetry in dsv location (field focussing) and
field polarisation.

2 Method

In this section, the governing integral equation for the magnetic field, the cho-
sen form of the current density, and the regularisation process, are presented.
The geometry of the problem is shown in Figure 1. On a cylinder of length 2L
and radius a there exists an unknown current density vector j(θ′, z′), for which
we intend to solve, such that it induces some desired magnetic field upon the
surface of an interior target region (dsv). This target region is chosen to be
a sphere of radius c, centred at the point (r, θ, z) = (rc, θc, zc) .

A time harmonic analysis is considered involving sinusoidal time depen-
dence of the form eiωt. By introducing vector and scalar potentials along with
the Lorentz gauge, Helmholtz equations can be obtained from Maxwell’s re-
duced equations [8, p.259, e.g.]. Free space Green’s functions solve these
equations and yield an integral expression for the magnetic induction vec-
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Figure 1: The model used to describe an rf head coil and an arbitrarily
positioned spherical target region (dsv).

tor [15]. Expanding this expression in terms of cylindrical polar coordinates,
we obtain the following expressions for the x- and y-components of the in-
duced magnetic field vector at any field point (r, θ, z):

H̄x(r, θ, z) =
a

2π

∫ 2π

0

∫ L

−L
[(a sin θ′ − r sin θ) j̄z(θ

′, z′)

− (z′ − z) cos θ′j̄θ(θ
′, z′)]× e−iαR

(
iα

R2
+

1

R3

)
dz′ dθ′ , (1)

H̄y(r, θ, z) = − a

2π

∫ 2π

0

∫ L

−L
[(a cos θ′ − r cos θ) j̄z(θ

′, z′)

+ (z′ − z) sin θ′j̄θ(θ
′, z′)]× e−iαR

(
iα

R2
+

1

R3

)
dz′ dθ′, (2)

where

R =
[
a2 + r2 − 2ar cos(θ′ − θ) + (z′ − z)2

]1/2
. (3)
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and α = ω
√
µ0ε0 . We wish to solve for the current density components jθ(θ

′, z′)
and jz(θ

′, z′), which makes equations (1) and (2) Fredholm integral equations
of the first kind [2, p.299, e.g.]. Solutions are highly ill-conditioned and a
regularisation strategy overcomes this problem.

The streamfunction method is used to obtain coil windings, which de-
mands a divergence free current density [1, e.g.]. The coil cylinder is divided
into K × Q subregions in θ and z. The current densities in each subregion
must be independent of one another and the azimuthal and axial current
density components must fall to zero at each subregion boundary in θ and z,
respectively. Appropriate forms for the (k, q) subregion are therefore

j̄ kqz (θ′, z′) = −
N∑
n=1

M∑
m=1

mK

2a
ckqmn sin

(
nQπ(z′ + L)

2L

)
cos

(
mKθ′

2

)
, (4)

j̄ kqθ (θ′, z′) =
N∑
n=1

M∑
m=1

nQπ

2L
ckqmn cos

(
nQπ(z′ + L)

2L

)
sin

(
mKθ′

2

)
, (5)

with the corresponding streamfunction

ψ̄ kq(θ′, z′) =
N∑
n=1

M∑
m=1

ckqmn sin

(
nQπ(z′ + L)

2L

)
sin

(
mKθ′

2

)
, (6)

and with M and N sufficiently large. Equations (4)–(6) exist only for −L+
(q − 1)2L

Q
≤ z′ ≤ −L + q 2L

Q
and (k − 1)2π

K
≤ θ′ ≤ k 2π

K
, where k = 1 :K and

q = 1:Q . We intend to solve for the coefficients ckqmn (m = 1:M , n = 1:N ,
k = 1:K , q = 1:Q) to find the current density over the entire cylinder.

We minimise the error Φ between induced and desired ‘target’ magnetic
fields over the surface of the dsv. This error is

Φ =

∫
©
∫ {[

H̄x − H̄Tx

]2
+
[
H̄y − H̄Ty

]2}
dS , (7)

where H̄Tx and H̄Ty are the homogeneous target field components. Specifi-
cation of limits and surface element for the surface integral depends on the
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location of the dsv. Consider the case where the dsv is symmetric about
the z-axis but centred at some axially asymmetric point (r, θ, z) = (0, 0, zc) .
Equations (4) and (5) are firstly substituted into equations (1) and (2). These
equations are then substituted into equation (7), which is minimised with re-
spect to the unknown coefficients ckqmn. This yields the condition

∂Φ

∂cfgst
= −2c

∫ c+zc

−c+zc

∫ π

−π

[
H̄TxU

fg
st (r1, θ, z) + H̄TyV

fg
st (r1, θ, z)

]
dθ dz

+ 2c
N∑
n=1

M∑
m=1

Q∑
q=1

K∑
k=1

ckqmn

∫ c+zc

−c+zc

∫ π

−π

[
Ukq
mn(r1, θ, z)U

fg
st (r1, θ, z)

+ V kq
mn(r1, θ, z)V

fg
st (r1, θ, z)

]
dθ dz = 0 , (8)

where
r1(z) =

√
c2 − (z − zc)2 ,

and Ukq
mn and V kq

mn represent double integrals in θ and z [15]. However, we also
wish to consider a dsv centred about some arbitrarily located point (r, θ, z) =
(rc, θc, zc) . This requires a lengthy geometric argument and a change of
variables to ensure convergence when numerically integrating in this radially
asymmetric case. While et al. [15] describe the resulting condition.

The integrals in equation (8) in terms of θ and z are evaluated numer-
ically using the Trapezoidal rule. A system of linear equations results in
terms of the coefficients ckqmn and is expressed in matrix form. However,
the ill-conditioned nature of this problem leads to errors in the correspond-
ing solution and so a regularisation strategy is implemented [2, p.307, e.g.].
The function Φ is replaced by a residual error R by adding a weighting λ
(the regularising parameter) of a penalty function Π, which represents some
constraint on the current density. The choice of penalty function is left to
the designer and in this article we consider a ‘smoothness’ penalty function,
which minimises the curvature of the coil windings. For the current den-
sity components given by equations (4) and (5), the smoothness condition
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becomes

∂Π

∂cfgst
=

2aπL

KQ

[(
sK

2a

)2

+

(
tQπ

2L

)2
]3

cfgst . (9)

Further details of this regularisation strategy are described by While et
al. [15]. The conditioning of the matrix equation can now be improved by
increasing the value of the regularising parameter λ. A trade-off exists be-
tween having a well-conditioned system, for which λ is large, and being able
to match the target field accurately, for which λ must be small [3]. To obtain
fixed winding patterns, we must contour the time average of the streamfunc-
tion ψ̄(θ′, z′) in equation (6). The fields induced by these coil windings are
plotted using equations (1) and (2) to test the accuracy of the final solution.

3 Results

In this section, coil winding solutions for a variety of phased array cases
are displayed and discussed, both in terms of their geometric shape and the
homogeneity of their correspondingly induced magnetic fields. Dimensions
represent a head coil of length 2L = 0.3 m and radius a = 0.125 m (see
Figure 1). We firstly consider an axially asymmetrically located target region
of radius c = 0.05 m, centred about the point (r, θ, z) = (0, 0, 0.05) . The x-
and y-components of the target magnetic field represent a homogeneous 90◦

linearly polarised field (y-polarisation) by setting H̄Tx(r, θ, z) = 0 A/m and
H̄Ty(r, θ, z) = 1 A/m. The frequency of operation was chosen to be 190 MHz
representing high field imaging (4.5 T). The program MatlabTM was used
extensively for numerical integration, solving matrix equations and plotting
figures of interest. Note the further examples and subsequent discussion by
While et al. [15].

We initially consider a K × Q = 4 × 2 array. Regularising using the
smoothness penalty function reduces the condition number of the matrix
system from the order of 1021 to a minimum of 104 when λ = 10−13. Figure 2
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Figure 2: Coil windings for a 4 × 2 array with an axially asymmetrically
located dsv.

displays the corresponding coil winding pattern. The dashed lines indicate
that the current is reversed in those portions of the coil. Note the axial
asymmetry of the coil array. Figure 3 displays the induced H̄y field at the
coil centre along a line of constant r = 0 m. The vertical dashed lines indicate
the boundary of the dsv and the horizontal dashed line indicates the desired
target magnetic field. The induced field matches the target field to a good
level of accuracy for most of the dsv, despite the extreme level of axial
asymmetry, but falls below the value of 1 A/m towards the end of the coils.
Using a value of λ smaller than 10−13 results in more complex windings but
a more desirable field, and vice versa for a larger value of λ.

Figure 4 displays the coil winding solution for a 6× 3 array, obtained by
altering the values of K and Q in equations (8) and (9). These coil windings
are simpler than those of the 4 × 2 array of Figure 2. The corresponding
induced H̄y field for the 6× 3 array displays a superior level of homogeneity
when compared to the 4×2 array. That is, increasing array size for this axially
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Figure 3: Induced H̄y(r, θ, z) field along coil centre corresponding to the
4× 2 array of Figure 2.
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Figure 4: Coil windings for a 6 × 3 array with an axially asymmetrically
located dsv.
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Figure 5: Coil windings for a 4 × 2 array with a radially asymmetrically
located dsv, assuming a y-polarised field.

asymmetric case leads to both simpler winding patterns and improved field
homogeneity, at the cost of additional circuitry.

The more complex case of radial asymmetry was also considered. The
dsv was chosen to have radius c = 0.025 m and centred about some point
(rc, θc, zc) = (0.05, π/2, 0) off axis. Applications for a head coil exist in fo-
cussing the field to a particular location in the brain, for example. For a
radially asymmetrically located dsv, the direction of linear polarisation of
the target field becomes important. Two types of linear polarisation were
considered: y-polarisation (90◦) and x-polarisation (0◦). The former repre-
sents polarisation in the same direction as that in which the dsv is offset
from the z-axis, and the latter represents a perpendicular direction.

Figure 5 displays the coil winding solution for a 4 × 2 array assuming a
y-polarised target field (λ = 10−13). Notice that we obtain large current on
the half of the coil cylinder that lies furthest away from the dsv, and small
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Figure 6: Induced H̄y(r, θ, z) field corresponding to the 4× 2 array of Fig-
ure 5, displayed as a contour plot (5%) on the (r, z) plane θ = π/2 .

current on the half closest to the dsv. Figure 6 shows the correspondingly
induced H̄y field as a 5% contour plot on the (r, z) plane at θ = π/2 . The
curved dashed line shows the boundary of the dsv in this plane, within which
the field is found to be homogeneous. As for the axially asymmetric case,
increasing the array size leads to improved field homogeneity.

Figure 7 displays the coil winding solution for a 4× 2 array, assuming an
x-polarised, radially asymmetrically located target field (λ = 10−13). This
array is of a significantly different form to that for the y-polarisation case of
Figure 5, in terms of coil shape, current amplitude and phase. The wind-
ings for the x-polarised case are placed much closer to the dsv than in the
y-polarised case, which would result in higher efficiency and sensitivity for
these coil designs. In addition, the induced H̄y field displays a superior level
of homogeneity within the dsv for the x-polarised case. This improvement in
efficiency, sensitivity and field homogeneity illustrates the importance of po-
larisation considerations in obtaining phased array coil windings for radially



4 Conclusion C12

0 1 2 3 4 5 6

−0.1

−0.05

0

0.05

0.1

0.15

θ

z (m)

Figure 7: Coil windings for a 4 × 2 array with a radially asymmetrically
located dsv, assuming an x-polarised field.

asymmetrically located target regions.

4 Conclusion

An inverse method for high frequency rf phased array coil design has been
presented. This method involved the minimisation of the error between in-
duced and target magnetic fields over the surface of the dsv. In considering
a phased array coil, the coil cylinder was divided into a set of subregions
and the current density in each represented using Fourier series expansions.
The resulting ill-conditioned integral equation was solved using regularisa-
tion, whereby an additional constraint was imposed on the current density
in terms of minimum curvature of the coil windings. This allowed a trade-off
to be realised between coil array simplicity and magnetic field homogeneity.
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The ability to focus the rf field was incorporated into the model by vary-
ing the location of the dsv before solving for the current density coefficients.
Both axial and radial asymmetry were investigated for a number of array
sizes and field polarisations. For the case of axial asymmetry, in which the
dsv was placed near one end of the coil, winding pattern solutions were ob-
tained for 4× 2 and 6× 3 arrays that were capable of inducing homogeneous
fields within the dsv. Increasing array size in this case led to simpler coil
windings and improved field homogeneity. For the case of radial asymmetry,
in which the dsv was placed closer to one side of the coil, the choice of the
direction of magnetic field polarisation had a considerable effect on the form
of the winding pattern solution. The important effects of coil coupling and
sample loading may be incorporated into the model in future work.
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