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Abstract

In nonparametric statistics the functional form of the relationship
between the response variable and its associated predictor variables is
unspecified but it is assumed to be a smooth function. We develop
a procedure for constructing a fixed width confidence interval for the
predicted value at a specified point of the independent variable. The
optimal sample size for constructing this interval is obtained using a
two stage sequential procedure which relies on some asymptotic prop-
erties of the Nadaraya–Watson and local linear estimators. Finally,
a large scale simulation study demonstrates the applicability of the
developed procedure for small and moderate sample sizes. The proce-
dure developed here should find wide applicability since many practi-
cal problems which arise in industry involve estimating an unknown
function.
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1 Introduction

We employ sequential procedures to estimate the sample size, n, required to
obtain fixed-width confidence interval for an unknown regression function,
m(x) at a point x = x0 . Several useful techniques have been proposed for
estimating m(x). Among these are the kernel methods, local polynomial
methods, spline methods, fourier methods and wavelet methods. Fan and
Gijbels [2] overviewed these techniques.

Nonparametric simple regression is often called scatterplot smoothing
procedure because an important application is to trace a smooth curve through
a scatterplot of y against x. The basic assumption in nonparametric regres-
sion is the existence of a smooth function m(·) relating the response y and
explanatory variable or predictor x. The main objective is to highlight an
important structure in the data without imposing any assumption about the
shape of the unknown regression function. Depending upon the probabilistic
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structure of the data (xi, yi), i = 1, . . . , n , the regression is referred to as
a fixed-design or random-design regression. The first case occurs when the
predictors, xi’s are ordered non-random numbers. The second case is when
the variable X is assumed to be random. The emphasis in this article will be
on equally spaced fixed design and we use both the Nadaraya–Watson [7, 9]
estimator and the local linear estimator, first introduced by Cleveland [1].

Consider the nonparametric regression model

yi = m(xi) + σεi , i = 1, . . . , n . (1)

where εi, . . . , εn are independent random errors for which E(εi) = 0 and
V (εi) = 1 ; (xi, yi) is a sequence of observations such that x1 < · · · < xn and
for simplicity we assume that each x ∈ [0, 1]. Here E(Y | X = xi) = m(xi)
and V (Y | X = xi) = σ2 for all i, in which case the model is said to be
homoscedastic.

One question often arises: what sample size do we need to achieve a level
of accuracy within some prespecified error bound? This question falls nat-
urally into the domain of sequential procedures which comes in handy if we
want to control the error of estimation at some preassigned level. Sequential
analysis has enriched statistics in general with sophisticated probability and
inferential techniques. Its successes are attributed to its various applications
in applied statistics where it is used in routine statistical investigation, clini-
cal trials, industrial process control, system reliability, life testing and many
others. The procedure is convenient and inexpensive when there is a cost
involved at each stage of sampling. Moreover it allows the data analyst to
make decisions based on the smallest possible sample size.

A natural way of constructing a fixed-width confidence band for m(x)
is as follows. Suppose that m̂(x) is an estimator of m(x); then a 100(1 −
α)% confidence band for m(x) where x ∈ [0, 1] satisfies

Pr{|m̂(x)−m(x)| ≤ d} ≥ 1− α (2)
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for a given d (> 0). There are many difficulties with finding a good solution
to inequality (2). Firstly, we must derive the distribution of |m̂(x)−m(x)| ;
secondly, the practical implementation of the kernel regression estimator re-
quires the specification of the bandwidth.

The main objective of this article is to apply data driven sequential ap-
proach to analyse nonlinear relationship between two variables using the
smallest possible sample size. Section 2 presents a brief introduction of non-
parametric kernel regression estimators and their asymptotic properties. Sec-
tion 3 then provides details of a two stage sequential procedure involving fixed
width confidence bands for nonparametric regression estimation. Finally, the
procedure is illustrated by an extensive simulation study, Section 4, and also
an example, Section 5.

2 Nonparametric regression estimation

Consider the univariate fixed equally spaced design regression model where
x1, . . . , xn are ordered fixed numbers with xi−xi−1 a constant for i = 2, . . . , n
and 0 ≤ xi ≤ 1 , for all i. Therefore, for a set of n design points,

xi =
i

n
, i = 1, . . . , n . (3)

For n pairs of observations (x1, Y1), . . . , (xn, Yn), the Nadaraya–Watson es-
timator [7, 9] of the regression function m(x) at a given point x0 has the
form

m̂nw(x0) =

∑n
i=1 YiK(x0−xi

hn
)∑n

j=1K(
x0−xj

hn
)
, (4)

where K(·) is known as the kernel and hn is called the bandwidth. As
suggested by Isogai [6], we take hn = n−r for 0.2 < r < 1 . Kernel den-
sity K(·) is a bounded probability density function on the real line where
lim|u|→∞ |u|K(u) = 0 ,

∫∞
−∞ uK(u) du = 0 and

∫∞
−∞ u

2K(u) du <∞ .
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The local linear estimator is a special case of local polynomial estima-
tors [2, 1] as it corresponds to fitting a first degree polynomial to the data
via weighted least squares with the kernel as weight. For n pairs of observa-
tions (x1, Y1), . . . , (xn, Yn), the local linear kernel estimator of the regression
function m(x) has the form

m̂ll(x0) =

∑n
i=1wiYi∑n
i=1wi

, (5)

where

wi = K

(
x0 − xi
hn

)
(sn,2 − (x0 − xi)sn,1) , (6)

with

sn,l =
n∑
i=1

K

(
x0 − xi
hn

)
(x0 − xi)l, l = 1, 2 . (7)

The following assumptions are necessary for the results given in Table 1:
(i) m′′(x) continuous on [0, 1]; (ii) K(·) is symmetric about zero, has a
bounded first derivative and is supported on [−1, 1]; (iii) hn → 0 and nhn →
∞ as n→∞ ; and (iv) the point x0 at which the estimation is taking places
satisfies hn < x0 < 1−hn for all n ≥ n0 where n0 is fixed. Table 1 summarizes
the bias and variance of the Nadaraya–Watson estimator (4), and the local
linear estimator (5). These computations are based on Taylor’s theorem for
any x ∈ [0, 1] [8]. Note that the bias of the local linear estimator is smaller
than Nadaraya–Watson estimator.

Theorem 1 Let K(·) satisfy
∫
uK(u) du = 0 ,

∫
u2K(u) du ≤ ∞ , K(u)

and |uK(u)| are bounded, hn is such that limnh3
n = ∞ and limnh5

n = 0 .
Suppose x1, . . . , xk are distinct points and g(xi) > 0 for i = 1, . . . , k . If
E[Y 3] is finite and if g′, w′, v′, g′′ and w′′ exist and bounded where g(x) =∫
f(x, y) dy , w(x) =

∫
yf(x, y) dy and v(x) =

∫
y2f(x, y) dy respectively,

then √
nhn (mhn(x1)−m(x1), . . . ,mhn(xk)−m(xk))

d→ Z∗, (8)
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Table 1: Bias and variance of kernel regression estimators where µ2 =∫∞
−∞ u

2K(u) du and B =
∫∞
−∞K

2(u) du.

Estimator Bias (E[m̂(x)−m(x)]) Variance

Nadaraya–
Watson

1
2
h2
n

[
m′′(x) +m′(x)f

′(x)
f(x)

]
µ2 +

o(h2
n) +O((nhn)−1)

(nhn)−1Bσ2 + o{(nhn)−1}

Local
linear

1
2
h2
nm
′′(x)µ2 + o(h2

n) +O(n−1) (nhn)−1Bσ2 + o{(nhn)−1}

where Z∗ is multivariate normal with mean vector 0 and diagonal covariance
matrix C = [Cii] where Cii = V [Y | X = xi]

∫
K2(u)du/g(xi) , i = 1, . . . , k .

Schuster [5] gave a complete proof of the above theorem. In the univariate
case, (8) reduces to √

nhn (m̂(x)−m(x))
d→ N(0, Bσ2). (9)

3 Fixed width confidence interval

Given d (> 0) and α ∈ (0, 1), with hn = n−r for 0.2 < r < 1 , suppose that
we wish to claim

Pr {m(x0) ∈ In = [m̂(x0)± d]} ≥ 1− α (10)

for large n, where x0 is fixed. Theorem 1 assures us that the probability
requirement (10) will be met if

n ≥ n∗ =

{
z2
α/2Bσ

2

d2

}1/(1−r)

, (11)
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where zα/2 is given by Φ(zα/2) = 1− 1
2
α , where Φ(·) is the standard normal

cumulative distribution function. Note that if K(·) is the standard normal
kernel, then B−1 = 2

√
π . For the estimation of σ2, we use the method of

Gasser et al. [3] which gives

σ̂2 = σ2
GSJ =

1

(n− 2)

n−1∑
i=2

[aiYi−1 + biYi+1 − Yi]2

(a2
i + b2i + 1)

, (12)

where ai = (xi+1−xi)/(xi+1−xi−1) and bi = (xi−xi−1)/(xi+1−xi−1). When
xi is a fixed equally spaced design on [0, 1], ai = bi = 1/2 and

σ2
gsj =

1

6(n− 2)

n−1∑
i=2

[Yi−1 + Yi+1 − 2Yi]
2 . (13)

Let C be a diagonal matrix of order (n − 2) with cii =
√

2/3 and P =
(pij)(n−2)×n be a tridiagonal matrix with pi,i = pi,i+2 = 1/2 , pi,i+1 = −1 .
By defining Q = P TC2P for normally distributed residuals the finite sample
distribution of σ2

gsj [3] is
1

g
σ2

gsj ∼ χ2
ν , (14)

where g = σ2tr(Q2)/(n − 2)2, tr(A) is the trace of A, ν = (n − 2)2/tr(Q2)
and χ2

ν is the chi-square distribution with ν degrees of freedom.

3.1 Two stage sequential procedure

A brief description of the two stage sequential procedure [4] is considered in
this section together with its stopping rule. Using the property hn < x0 <
1− hn and 0.2 < r < 1 , it follows that r ∈ (rl, 1) where rl = max(0.2, r0),

r0 =

{
− log [min (x0, 1− x0)]

log n

}
(15)
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and n ≥ 4 . Let {(x1, Y1), . . . , (xn0 , Yn0)} be the initial sample where Yi is
the observed value of m(xi) at xi = i/n0 for i = 1, . . . , n0 . From the optimal
sample size, n∗ given in (11), we propose the following rule for N1:

N1 = max
{
n0,
⌊{
Bt2α/2,νσ

2
GSJd

−2
}1/(1−r1)

⌋
+ 1
}
, (16)

where tα/2,ν is the upper α/2 percentile of the t-distribution with ν degrees of
freedom from (14), bnc refers to the floor function, and from (15), r1 ∈ (rl, 1)
where rl = max{0.2,− log(min[x0, 1−x0])/ log(n0)}. In order to comply with
the data design in (3) and to continually use the observed data in the initial
sample, take the final sample size N ≡ n0T where

T =

⌊
N1

n0

⌋
= max

{
1,

⌊
1

n0

{
Bt2α/2,νσ

2
GSJd

−2
}1/(1−r1)

⌋}
(17)

and N ≥ N1 . If T = 1 , no additional observations are required in the
second stage and N = n0 . However, if T > 1 , we take extra sample of size
N − n0 = n0(T − 1) in the second stage with

xi =
i

n0T
for i = 1, . . . , (n0T − 1) and i 6= T, 2T, . . . , n0T . (18)

The initial sample data corresponds to (xi, Yi) for i = T, 2T, . . . , n0T . In
an application of above stopping rule (17), it is important to select the best
available values for the design constants r and n0 for fixed predesigned values
of d and α . Finally we use the sample {(x1, Y1), . . . , (xN , YN)} with xi = i/N
to compute Nadaraya–Watson (4) and local linear (5) estimates for m(x0)
and construct the confidence band given in (2).

4 Simulation study

We use the following two models to assess the performance of the confidence
bands developed in Section 3:
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1. Y = sin2(.75x) + 3 + ε ;

2. Y = 2 exp{−x2/.18}+ 3 exp{−(x− 1)2/.98}+ ε .

Errors ε were generated from (i) normal distribution ε ∼ N(0, .52) and
(ii) double exponential (Laplace) distribution ε ∼ DoubleExpo(0, β). The
value for scale parameter β, which is .5/

√
2, was calculated to make V (ε) =

σ2 = .25 . Widths of the interval d = .05, .07, .09, .12, .14 were used. The
initial sample size n0 was chosen to be 25. The confidence bands were in-
vestigated for α = .10 and α = .05 . For all simulations, we used standard
normal kernel K(u) = (2π)−1/2 exp(−u2/2), −∞ < u <∞ . In both models
15000 replicate samples for each experimental setting were carried out to
obtain the final sample sizes required to estimate m(x) at x0 = .306 for a
given fixed width 2d. The parameter r of the bandwidth was computed as
in Section 3.1.

First we consider two stage sequential procedure with the fixed design
for α = .05 and then for α = .10 . The average final sample size (n̄), aver-
age sample size which is not rounding up the sample size to get a multiple
of n0 (n̄1), residual variance estimate (σ̂2), averages of local linear (m̂ll), and
Nadaraya–Watson m̂nw estimates and finally coverage probabilities of both
estimators (p̃ll), (p̃nw) are reported in Tables 2–5 for α = .05 and α = .10
respectively. Here (.) in the tables give the standard error of the estimated
value. p̃ = nm(x0)/nsim where nm(x0) is the number of confidence intervals
that contain m(x0) among nsim(= 15, 000) number of simulations.

The average amount of oversampling (%Over) which is calculated by
(n̄−n∗)/n∗)100% in the two stage procedure is increasing with increasing d.
The average percentage difference between n̄ and n̄1 decreases with decreas-
ing d. Coverage probabilities of both Nadaraya–Watson (p̃nw) and local lin-
ear estimators (p̃ll) achieved preset confidence coefficients 95% and 90% at
x0 = .306 in Model 2. But the coverage probabilities for Model 1 shows
a different picture as the Nadaraya–Watson estimator fails to achieve the
required coverage probabilities whereas the local linear method does. This
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Table 2: Empirical coverage of ll and nw estimators for model 1: m(x0) =
3.052 and α = 0.05 .

εi ∼ N(0, 0.52) εi ∼ DoubleExp(0.25)
d .14 .12 .09 .07 .14 .12 .09 .07
n∗ 64.6 105.4 262.8 583.6 64.6 105.4 262.8 583.6
n̄ 109.7 171.7 403.0 890.8 114.7 180.6 422.6 942.2

(.53) (.86) (2.10) (4.78) (.80) (1.29) (3.06) (7.07)
%Over 69.7% 62.8% 53.4% 52.7% 77% 71.3% 60.8% 59.5%

n̄1 97.2 158.8 393.8 878.3 102.2 168.2 410.1 929.7
(.53) (.85) (2.12) (4.75) (.80) (1.28) (3.06) (7.07)

m̂ll 3.070 3.070 3.070 3.066 3.071 3.070 3.070 3.069
(.001) (.001) (.000) (.000) (.001) (.001) (.000) (.000)

m̂nw 3.103 3.103 3.099 3.076 3.104 3.103 3.098 3.090
(.001) (.000) (.000) (.000) (.001) (.000) (.000) (.000)

p̃ll .9484 .9521 .9649 .9737 .9421 .9466 .9519 .9628
(.001) (.000) (.000) (.000) (.002) (.002) (.002) (.002)

p̃nw .9290 .9174 .9037 .9277 .9219 .9145 .9097 .9222
(.002) (.002) (.002) (.002) (.002) (.002) (.003) (.003)

σ̂2 .2502 .2512 .2486 .2503 .2504 .2518 .2488 .2518
(.001) (.001) (.001) (.001) (.001) (.001) (.000) (.000)
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Table 3: Empirical coverage of ll and nw estimators for model 2: m(x0) =
3.024 and α = 0.05 .

εi ∼ N(0, 0.52) εi ∼ DoubleExp(0.25)
d .14 .12 .09 .07 .14 .12 .09 .07
n∗ 64.6 105.4 262.8 583.6 64.6 105.4 262.8 583.6
n̄ 109.6 171.9 400.7 880.5 114.7 180.6 422.6 942.2

(.53) (.86) (2.10) (4.78) (.53) (.86) (2.10) (4.65)
%Over 69.6% 63.0% 52.5% 50.9% 77.4% 71.0% 60.9% 59.2%

n̄1 97.2 158.8 393.8 878.4 102.2 167.9 410.2 916.2
(.53) (.85) (2.12) (4.75) (.80) (1.27) (3.01) (7.00)

m̂ll 3.031 3.031 3.030 3.025 3.032 3.031 3.030 3.029
(.001) (.001) (.000) (.000) (.001) (.001) (.000) (.000)

m̂nw 2.993 2.994 2.996 3.006 2.994 2.994 2.996 2.999
(.001) (.000) (.000) (.000) (.001) (.000) (.000) (.000)

p̃ll .9522 .9565 .9721 .9840 .9469 .9508 .9611 .9736
(.002) (.002) (.001) (.001) (.002) (.002) (.002) (.001)

p̃nw .9508 .9564 .9597 .9638 .9519 .9519 .9490 .9513
(.002) (.002) (.002) (.002) (.002) (.002) (.002) (.002)

σ̂2 .2502 .2515 .2476 .2488 .2504 .2517 .2492 .2494
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
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Table 4: Empirical coverage of ll and nw estimators for model 1: m(x0) =
3.052 and α = 0.10 .

εi ∼ N(0, 0.52) εi ∼ DoubleExp(0.25)
d .14 .12 .09 .07 .14 .12 .09 .07
n∗ 64.6 105.4 262.8 583.6 64.6 105.4 262.8 583.6
n̄ 63.3 96.8 221.9 477.7 66.4 100.9 233.3 497.5

(.28) (.46) (1.13) (2.52) (.43) (.67) (1.66) (3.68)
%Over 70.8% 60.1% 47.3% 42.8% 49.3% 79.1% 66.9% 54.9%

n̄1 51.7 84.2 208.5 464.7 53.9 88.5 220.8 485.0
(.28) (.45) (1.12) (2.51) (.42) (.67) (1.66) (3.68)

m̂ll 3.069 3.069 3.070 3.070 3.067 3.068 3.070 3.070
(.001) (.001) (.000) (.000) (.000) (.001) (.000) (.000)

m̂nw 3.104 3.102 3.102 3.070 3.084 3.103 3.102 3.097
(.001) (.001) (.000) (.000) (.001) (.001) (.000) (.000)

p̃ll .8814 .89117 .9132 .9289 .8857 .8917 .9030 .9137
(.003) (.003) (.002) (.002) (.003) (.003) (.002) (.002)

p̃nw .8646 .8560 .8264 .8000 .8697 .8564 .8217 .7993
(.003) (.003) (.003) (.003) (.003) (.003) (.003) (.003)

σ̂2 .2493 .2513 .2507 .2507 .2499 .2516 .2516 .2497
(.008) (.008) (.008) (.008) (.001) (.001) (.001) (.001)
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Table 5: Empirical coverage of ll and nw estimators for model 2: m(x0) =
3.024 and α = 0.10 .

εi ∼ N(0, 0.52) εi ∼ DoubleExp(0.25)
d .14 .12 .09 .07 .14 .12 .09 .07
n∗ 64.6 105.4 262.8 583.6 64.6 105.4 262.8 583.6
n̄ 63.3 96.9 222.0 477.1 66.5 101.1 232.7 496.8

(.28) (.46) (1.13) (2.51) (.43) (.67) (1.66) (3.64)
%Over 70.8% 60.3% 47.4% 42.6% 79.4% 67.2% 54.5% 48.5%

n̄1 51.7 84.2 208.5 464.8 54.0 88.7 220.2 484.3
(.28) (.45) (1.12) (2.51) (.42) (.67) (1.66) (3.64)

m̂ll 3.031 3.030 3.031 3.030 3.032 3.030 3.031 3.029
(.001) (.001) (.000) (.000) (.001) (.001) (.000) (.000)

m̂nw 2.992 2.992 2.994 2.996 2.993 2.992 2.994 2.996
(.001) (.000) (.000) (.000) (.001) (.000) (.000) (.000)

p̃ll .8875 .9009 .9274 .9455 .8904 .8989 .9161 .9339
(.001) (.001) (.000) (.000) (.003) (.003) (.002) (.002)

p̃nw .8966 .9009 .9151 .9081 .9041 .8991 .9029 .8989
(.001) (.001) (.000) (.000) (.002) (.003) (.002) (.003)

σ̂2 .2494 .2515 .2508 .2506 .2501 .2518 .2511 .2496
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)
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noticeable difference is mainly due to the fact that Model 1 is a harmonic
function and the bias term of Nadaraya–Watson estimator is heavily depen-
dant on derivatives of the unknown function m(·). However equation (16)
shows that as d decreases, the required final sample size n increases and
hence coverage probabilities improve. Both tables depict this result. Ac-
cording to Tables 2–3, p̃nw for Model 1 when α = .05 started decreasing with
decreasing d from .14 to .09 and then improve due to fairly large sample
sizes for small d. A similar pattern appears in Tables 4–5 but p̃nw values
improve after d = .07 as calculated sample sizes are smaller when α = .10
and larger sample sizes occur for much smaller values of d compare to those
when α = .05 . However, according to equation (11) very small d values
result in larger sample sizes which is not realistic in practical situations and
very high d values result in small sample sizes which is not enough to achieve
a given coverage probability. Be aware that decreasing d means m̂(·) ≈ m(·)
and this happens when n is fairly large and how large we have to take de-
pends again on individual bias terms and rate of convergence. This is very
likely the reason why the average sample size n̄ is fairly large when compared
to corresponding optimal sample size n∗ for both Models 1 and 2.

5 Application

Figure 1 shows the sequential kernel regression procedure estimating row
average intensity of a digital photo of Leonardo da Vinci’s painting “Mona
Lisa” in each row of the image. The data were measured as arithmetic
average of the values in each row of the image. These row averages are
used to correct for lighting effect especially when there is a top-to-bottom
lighting variation. In that case, robust smoothing of row averages may be a
good way to estimate the lighting effect. Row numbers were rescaled to be
within (0, 1) to comply with our data design. We first took an initial sample
of size n0 = 25 from a sample of 425 and determined the final sample size n
for both α = .05 and .10. As values of row averages ∈ (72, 225), d was chosen



5 Application C713

...........................
.

.

.

.

................
............

.........
...........

................................................
.....................................

..
....
.....
............

..................................................................................
..........

.......
......

......................................
........

.....................................................
......

.

r

a

0.0 0.2 0.4 0.6 0.8 1.0

10
0

15
0

20
0

Fig 1.1A

LL
NW 

.............................
.

.

.

.

................
...........

.........
...........

...............................................
.....................................

..
....
.....
.............

...................................................................................
..........

.......
......

....................................
..........

..................................................
......

.

r

a

0.0 0.2 0.4 0.6 0.8 1.0

10
0

15
0

20
0

Fig 1.1B

LL
NW

Figure 1: Row average intensities, versus row number, of a digital photo of
“Mona Lisa” with sequential kernel regression: Fig 1.1A, d = 2.5, α = 0.05,
N = 250 ; Fig 1.1B, d = 2.5, α = 0.10, N = 150 .
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to be 2.5. Finally we estimated both m̂ll and m̂nw using a sample size of n.
In both graphs, there is no noticeable difference between two estimators as
both final sample sizes nα=.05 = 250 and nα=.10 = 150 are fairly large. Both
final sample sizes are able to highlight an important structure in the original
data, hence produce a better estimate of average intensity for a given row
number.

6 Summary and conclusions

We studied data driven, fixed width, confidence bands for nonparametric
regression curve estimation using local linear and Nadaraya–Watson estima-
tors. Local linear method had near nominal coverage probabilities in most
of the cases. The σ2

gsj appeared to be very close to its actual value even for
small sample size cases. The results presented here have been applied to the
case of equally spaced design points and the results can also be extended to
the case of randomly spaced design points.
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