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Taxonomic analysis of marine phytoplankton
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Abstract

Samples of sea water contain phytoplankton taxa in varying amounts,
and marine scientists are interested in the relative abundance of each
taxa. Their relative biomass can be ascertained indirectly by measur-
ing the quantity of various pigments using high performance liquid
chromatography. However, the conversion from pigment to taxa is
mathematically non trivial as it is a positive matrix factorisation
problem where both matrices are unknown beyond the level of initial
estimates. The prior information on the pigment to taxa conversion
matrix is used to give the problem a unique solution. An iteration of
two non-negative least squares algorithms gives satisfactory results.
Some sample analysis of data indicates prospects for this type of anal-
ysis. An alternative more computationally intensive approach using
Bayesian methods is discussed.
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Phytoplankton are small organisms, typically 0.001 to 0.5 mm, that live in
the ocean and form the base of the oceanic food chain. They come in many
different forms and, in spite of being tiny, are by mass the major life form in
the oceans. They use sunlight as an energy source to photosynthesise organic
compounds from carbon dioxide, producing oxygen as a by-product. Because
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of their importance in the oceanic ecosystem, the Australian Antarctic Division
collects samples across the Southern Ocean to determine the phytoplankton
types present and study their behaviour.

Using microscopic methods to identify the phytoplankton taxa is both slow
and tedious. An alternative is to look for pigments that identify the different
taxa of phytoplankton. The pigments can be identified by high performance
liquid chromatography (HPLC). It is usually known which pigments are
present in each taxa but the proportions vary and some pigments are shared
by several taxa. The Antarctic Division has a program CHEMTAX [5] that
estimates the relative abundance of the taxa and the proportion of each
pigment in the various taxa. CHEMTAX uses trial steps and steepest descent
to locate a solution to this problem, but the Antarctic Division is interested
in possibilities for further development.

The MISG problem was to convert the data matrix of samples by pigments S°,
to the product of two matrices: samples by taxa C providing the proportions
of the taxa in each sample, and a transform matrix of taxa by pigments F
giving the pigment proportions in each taxa.

There is prior information available for the values in the taxa by pigments
matrix. In particular, the position of zero entries in this matrix are generally
known. Estimated means and standard deviations are supplied for the non-
zero elements. The Australian Antarctic Division supplied a sample data set
for use at the MISG.

Sections 2 and 3 define the conversion problem as an optimisation problem.
The following two Sections 4-5 cover some possible general methods of solution
to the optimisation problem, and then cover the specific method used in this
article. Section 6 describes some data, and then Section 7 discusses properties
of the solution. It is shown that the algorithm converges reliably, and the
effect of a scale factor (or standard deviation) for the taxa by pigment matrix
is examined. It is shown that bootstrap methods can be used to estimate the
accuracy of the calculated values, while the differences between the observed
and calculated values provides information on the quality of fit. Section 7.4
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examines residuals and the type of information that can be obtained from
them.

Section 8 describes an alternative approach to the analysis of the data using
Bayesian techniques. These methods have the potential to provide more
extensive statistical information about parameter estimates and taxa propor-
tions.

2 Conversion from taxa to pigments

Although the problem is the conversion from pigments to taxa, the basic
equation is a conversion from taxa to pigments. If the proportion of each
taxa present in a particular sample and the amount of pigment in each taxa
are known, then the amount of each pigment is calculated using the following
vector matrix product and the transformation matrix F:

s =cF, (1)
where
s is the row vector of amounts (mass/volume) of each pigment,
c is the row vector of amounts (mass/volume) of each taxa,

F is a matrix with each row giving the amounts of each pigment in a
taxa (mass of pigment / mass of taxon).

In the case where there are multiple samples the row vectors s and ¢ become
matrices S and C with each row corresponding to a sample, so that equation (1)
becomes

S =CF. (2)
All three matrices are restricted to contain only positive or zero values.

As all of the taxa contain chlorophyll-A; it is often convenient to rescale
the rows of masses to be relative to the amount of chlorophyll-A present.
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For convenience it is assumed that the last column of S and F contain the
chlorophyll-A values. An example of such an F matrix is given in Table 1.
The normalisation is done by multiplying by a diagonal matrix D containing
the inverse of the chlorophyll-A column in S. A second normalisation of the
matrix F uses the diagonal matrix E containing the inverses of the chorophyll-A
column of F so that equation (2) can be written as

(DS) = (DCE ) (EF). (3)

Each row of the matrix DCE~" sums to one (this follows from the unit
columns of DS and EF) and gives the proportions of each taxa relative to
their production of chlorophyll-A.

3 Conversion from pigments to taxa

The values of particular interest are the proportions of the various taxa
present, given in the rows of matrix C. These need to be obtained from
measured values of the pigments present, given in the rows of matrix S°. This
is an inverse of the calculation given in the previous section, and can only
be solved when there are at least as many pigments as taxa. In addition
to the measured values S°, there is some knowledge of the transformation
matrix F. In particular, the locations of the zero values are generally known
and approximate values are available for the non-zero values. However, it is
known that the non-zero elements of F are not constant, but vary with the
conditions, such as the amount of sunlight and nutrients available.

The essential part of this problem is finding the matrices C and F such that
their product is close to the measured values of the pigments S°. However,
this is not sufficient to make the values of C and F unique, as given one
solution, other solutions can be generated as CZ~' and ZF with any matrix Z
that does not generate negative elements in these products.

To get a unique solution the values of the F matrix are required to be close
to an initial estimate F°. The initial F® together with the standard deviations
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TABLE 1: Estimated F matrix for samples collected at 0-15m depth. Compare
to Table 1 of Wright et al. [10]: the names of pigments and taxa are the same
as in Table 1 of Wright et al.

Taxa Chle; Chley  Peri Fuco Neo  Pras
Prasinophytes 0 0 0 0 0.079 0.096
Chlorophytes 0 0 0 0 0.074 0
Cryptophytes 0 0 0 0 0 0
Diatoms A 0 0.15 0 0.90 0 0
Diatoms B 0.036 0 0 0.86 0 0
Dinoflagellates A 0 0 084 0 0 0
Haptophytes-H 0.20 0 0 0.08 0 0
Haptophytes-L 0.12 0 0 0.01 0 0
Taxa Violax 19-Hex Allox Lutein Chlb Chla
Prasinophytes 0.049 0 0 0.006 0.60 1
Chlorophytes 0.037 0 0 0.21 0.16 1
Cryptophytes 0 0 0.22 0 0 1
Diatoms A 0 0 0 0 0 1
Diatoms B 0 0 0 0 0 1
Dinoflagellates A 0 0 0 0 0 1
Haptophytes-H 0 0.23 0 0 0 1
Haptophytes-L 0 1.23 0 0 0 1

of its elements (given in the matrix G), are the prior knowledge about the
transformation matrix F. Section 6 discusses the availability of the data
needed for this calculation.

Similarly, the measure of closeness to the measured pigment data S° is defined
using a matrix T of standard deviations values. Then C and F are found
from the minimisation, with respect to the elements of C and the non-zero
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elements of F, of the sum of squares

2 2
Z Ci’kfk; — Sg- fk7- — fﬁ
Z ( k - ) ) + Z ) ,) (4)

i K kieo \ Ik

where 1 indexes samples, j indexes pigments, k indexes taxa, and

Cix is the 1,k element of the matrix C,

s‘f’j is the i,j element of the matrix S°, the measured values of pigment

per volume,

ti; is the standard deviation of the i,j element of the matrix S°,
fij is the k,j element of the transform matrix F,

f%]- is the k,j element of the initial estimate matrix F°,

gi; is the standard deviation of the k,j element matrix F°,

@ is the set of k,j values corresponding to non-zero elements in F.

The measured values S° of pigment concentrations are used to define the error
terms in the minimisation as then the errors are more likely to be closer to a
Gaussian distribution than the scaled values of equation (3), and the standard
deviations can be estimated directly from the data values. In particular, this
makes the samples with low pigment values less likely to cause difficulties by
biasing the results.

We wish to find values of the matrices C and F that give the product CF
close to the measured values of the pigments S°. The measure of closeness
is described by a matrix T of standard deviations values. The estimates
of the transformation matrix F° together with the corresponding standard
deviations G provide the initial knowledge about F.

This formulation of the problem differs from that used in CHEMTAX. In
particular, the prior information about the F values is given as a mean and
standard deviation, and standard deviations have been introduced for the
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errors in the measured data S°. This means that the optimality criterion is
different and the results will not be identical with those from the CHEMTAX
program.

4 Methods of solution

To examine the possible methods of solution it is easiest to first consider
methods of solution of the simpler problem of minimising the sum of the
squared elements of the matrix

S°—CF (5)

with respect to the values in C and the non-zero values of F. The elements of
C and F all need to be non-negative. So this is a positive matrix factorisation
problem.

The first possible solution method is to use a general purpose optimisation
algorithm. This loses any advantage that may be available from the special
structure of the problem. As the problem has many variables this approach
may not be the most efficient solution method.

If F is known, minimising (5) is a linear regression for C. Without the
condition that the elements are positive C can be found from S°F'(FF")~.
The restriction that C does not contain negative values makes this a non-
negative regression problem for each row of C. There is a standard solution
procedure for non-negative regression given by Lawson and Hanson [3]. This
reduces the problem to finding the non-zero elements of F which can be done
using a general purpose optimiser or a constrained nonlinear least squares
program. Typically the number of non-zero elements in F is much smaller
than in C so this makes a large reduction in the number of dimensions in the
problem.

It is also possible to solve for F, if C is known, using the non-negative least
squares algorithm, since this is a linear least squares problem for each column
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of F. Thus, given an initial estimate for F, a solution can be found by using
non-negative least squares to alternatively solve for C and then for F. As each
step minimises the sum of squares, this iteration is expected to converge.

Lee and Seung [4] proposed an iterative algorithm that progressively improves
approximate solutions for C and F, in the least squares problem (5). Their
formula to update C is

Clk = ik [SF ik /[CFF ] (6)

where the T indicates the updated value. This iteration, given positive initial
values, will maintain a positive solution. We note that SF" = CFF' at the
solution to the least squares problem for C, and this iteration solves the
non-negative linear least squares problem for C. Lee and Seung [4] prove that
each application of this formula reduces the sum of squares and the stationary
point is the solution of the least squares problem for C given F. Lee and
Seung [4] use a similar formula for improving the estimate for F:

] 5 = f;[C"S]ij/[CTCFly;. (7)

As well as maintaining positive values, any zero values in F are maintained as
Zero.

The two steps of the Lee and Seung [4] iteration use only simple matrix
operations, that are available as basic linear algebra algorithms [9], optimised
for minimum run times on various processors, and thus the algorithm steps
can be implemented very efficiently. In trials of the above algorithms with the
phytoplankton data the more efficient calculation gives a large advantage over
more accurate steps using the non-negative least squares algorithm. However,
both iterations converge slowly and require a large number of iterations on
the phytoplankton data.

The result from the positive matrix factorisation algorithms is not unique. The
initial values determine which result is obtained. This problem is addressed
in the next section. Trials indicate there is no benefit in normalising one
or both of the factors during the iterations, as this can be done after the
iteration has converged, saving some calculation steps during the iterations.
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5 Extension to the phytoplankton problem

The phytoplankton minimisation problem (4) is a bilinear sum of squares and
iterations similar to the last section can be derived. By introducing augmented
matrices [CTI], [S°TFOT], and [TTG'], the expression (4) can be converted to
the form (5). However, it is simpler to work directly with expression (4).

As before, non-negative least squares can be applied to each row of C and
each column of F, omitting the elements known to be zero. Extending the
Lee and Seung [4] iteration involves considering the derivatives of (4) with
respect to (wrt) C and F:

f 50 'fr j
wrt Cpr, ZZ (2, Cpk ) J 2 e i (8)
j tP,J'
Cir Zk Ci,kfk,q Ci T51 .q f? q
wrt frq, 2 " 25 —zZ —zg - (9)
i Lq Lq i Lq

The zeroes of these derivatives define the solution to the least squares prob-
lem (4). Further, when the derivative is positive, the variable differentiated
with respect to (cp, or frq) is too high, and when the derivative is negative
the variable is too low. The ratio of the positive and negative terms in the
derivative can be used to improve an estimate of the variable:

of —¢ ZJ P, J/tfm'

R W chpkfk,j) fri/th;’

d g S iCirs /thy +104/98,

"4 e 2 iCir( 2y Ci7kfk7q)/ti,q + fﬁq/giz,q .

(10)

(11)

Unlike the iterations given in Section 4, the prior information for F, namely F°
and its standard deviation G, ensures that this iteration will in general
converge to a unique result. If the initial values are positive, then the
calculated values remain positive; and if an element in the initial value of F is
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zero, then that element will remain zero. Values in F can be held at a fixed
value by giving them a very small standard deviation. If it is desirable to
give more weight to the calculation of F or some elements of F, then this can
be done by reducing the standard deviations gy 4.

Similar to the algorithm of Lee and Seung [4], the formulas (10) and (11)
can be written in terms of matrix operations that have been optimised for
minimum run times, and hence the steps in this iteration also run rapidly. The
sum of squares (equation (4)) is reduced by each iteration, but convergence
requires several thousand iterations on the phytoplankton data. An occasional
application of the much slower non-negative least squares algorithm to update
the value of C has been found to reduce the time needed to reach convergence;
however, it was found that the non-negative least squares approach alone
takes a significantly longer time to converge on the phytoplankton data using
Matlab code.

6 The phytoplankton data

Sample phytoplankton data was made available to the MI1SG for evaluation of
analysis techniques. Details of the data collection and estimated abundances
using CHEMTAX were given by Wright et al. [10]. The data consists of
1114 samples taken at various depths over an area of the southern ocean. The
samples were analysed by HPLC for twelve pigments, and an initial estimate
of the conversion matrix from eight taxa to the twelve pigments was provided.

The previous analysis using the CHEMTAX program was performed using the
normalised (with respect to chlorophyll) pigment values without the use of
standard deviations. It is thought that more realistic results are obtained if
standard deviations are used to indicate the accuracy of the data pigment
matrix S°, which contains values that vary by more than three orders of
magnitude. Unfortunately, repeat values are not available and so standard
deviations of the HPLC data had to be estimated. The reported accuracy of
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the HPLC instrument is about one percent of the reading with a detection
limit of about 0.0003, hence a standard deviation of T = 0.015° 4+ 0.0003 is
used in the following demonstrations of the analysis method. These values
need to be compared with the actual residuals that occur after fitting as in
Section 7.4.

The reconstruction of taxa content depends only on the sample that passed
through the HPLC unit, and is not affected by sampling variations that might
have occurred before the HPLC process. It would be useful to have directly
measured standard deviations from the HPLC unit as these often include extra
variation not included in estimates. In particular, the error involved in the
matrix factorisation in this article is only one possible source of variation, and
is likely to be small compared to the sampling errors involved in measuring
seawater from the Southern Ocean. Repeatability measures from earlier stages
in the data collection would help in the interpretation of the data.

The values F® and the associated standard deviations G are estimates that
are provided as prior knowledge by the user. Here the standard deviations act
as inverse weighting factors that determine how large a change in the values
is reasonable. The actual amounts of pigments in each taxa depend on the
amounts of nutrients and sun light that were available to the sample. Most of
the taxa can be grown in the laboratory and the pigments measured; however,
it is difficult to determine the normal range of pigment concentrations in the
laboratory. Nor can it be assumed with certainty that all the phytoplankton
sampled in the open ocean that survived the processes of freezing, transporta-
tion and laboratory growth, produced the same pigment ratios that are seen
in the ocean. As the matrix factorisation does depend on the prior values,
they need to be specified carefully, and the associated errors examined after
the model has been fitted, as for example in Section 7.4.

In the following the standard deviations G are set proportional to the initial
estimates F°. Section 7.2 looks at how the proportionality factor for these
standard deviations affects the fit to the data.
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7.1 Convergence

The algorithm for calculating C and F is iterative starting from some initial
values. To be useful it needs to converge reliably to the same answer regardless
of the initial values used. To test this, elements of the initial C are randomly
generated between 0.1 and 1.1, and used as the initial values. A large number
of iterations are used to get a high accuracy. Figure 1 plots the ratio of
standard deviation to the mean, against the mean value for each of the values
in the matrices C and F. The values obtained are repeatable to about eight
decimal places which is as good as can be expected for finding the minimum
of a sum of squares using 16 digit floating point arithmetic.

7.2 Scale of standard deviations for F°

The standard deviations gy in equation (4) determine how close the estimated
values f;; are to the user supplied estimates fo The effect of this choice is
examined by fitting the C and F values with dlfferent scaling values multiplying
the values of g;;. For this the values of g;; are initially set equal to a factor
times fgj, except for the last column of F which consists of ones and is given
very small standard deviations. Figure 2 shows how the error in the S values
changes with the factor used for standard deviations of F (that is, gij). While
the factor is greater than 0.01 there is little effect on the root mean square
errors for S. That is, the initial estimates F are not being given so much
weight that they prevent the estimates of C (and hence of S) from finding
their optimal values to minimise (8). However, small g;; force F to stay too
close to F® and this constrains C such that the errors in (8) become large.
To provide an amount of stabilisation that ensures that the result does not
excessively depend on randomness in the data it is normal to choose a factor
near the upward bend in Figure 2. From this plot the factor is chosen to
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Fi1GURE 1: Convergence of values of C and F given random starts.
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Weighted root mean square error vs sd factor

Root mean square
»
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FIGURE 2: Effect of standard deviation size for F on the size of errors in S.

be 0.01 giving standard deviations of 0.0H(%)..

It is of interest to compare the estimates produced by our method to those
produced by CHEMTAX. Wright et al. [10, Table 1] give both initial estimates F°
of the pigment/ChlA ratios, and final estimates F for samples collected at
0-15m depth. Our Table 1 shows our estimates for the same data subset.
For most taxa our method gives very similar estimates to CHEMTAX, except
for Diatoms A and Haptophytes-H. These particular ratios were picked out
for discussion by Wright et al. [10] because the CHEMTAX results were rather
different to the initial estimates in F°. For these cases our figures are mostly
closer to the initial estimates, except for the 19’-Hex pigment for Haptophytes-
H where our estimate is about half that of CHEMTAX. We conclude that the
method in this article can be considered to be producing reasonably similar
results to those of CHEMTAX.



7 Properties of the solution M134

7.3 Accuracy of results

To determine the accuracy of the calculated values a bootstrap procedure [1],
where the input data is perturbed to determine the effect on the output values,
is used. The first procedure examined is a parametric bootstrap. The values
in S° are replaced by log Gaussian random variables with mean equal to the
value in S° and the standard deviation 0.01S° +0.003 , which is the estimated
accuracy of the HPLC instrument. This is repeated ten times and the results
are shown in Figure 3.

Figure 4 shows the results from a nonparametric bootstrap. This is done by
ten repeats of randomly selecting, with replacement, rows of S° to create a
new S° to be used in the fitting. The nonparametric bootstrap (Figure 4)
indicates a slightly lower accuracy for the F coefficients and a larger variation
in accuracy for the smaller C coefficients compared with the parametric
bootstrap (Figure 3). These differences probably reflect that the actual
data have more sources of variation than the formula 0.01S° + 0.003, that is
based on only the errors in analytical measurement, provides. However, both
bootstrap approaches indicate an accuracy of about two decimal places in the
F matrix for the larger coefficients, and one to two decimal places for larger
elements in the C matrix. The relative accuracy in the values drops as the
coefficients become smaller.

The results from the bootstrap analysis can be divided up in different ways.
Figure 5 shows the division into the separate taxa for the C elements. This
figure subdivides the data plotted in Figure 3. It can be seen that some taxa
occur in higher proportions than others, and some taxa are determined more
accurately than others.

7.4 Residual distributions

The difference between the measured values S° and the predicted values CF
provide residuals that can be examined to determine how accurately the
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Non parametric bootstrap, C coefficients
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F1GURE 4: Nonparametric bootstrap results for C and F.
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10 10 10° 10 10 10

F1GURE 5: Parametric bootstrap results for C divided according to taxa.
Here similar to the previous figures, the x-axis is the mean value and the
y-axis the standard deviation/mean.
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data has been reproduced. As an overall measure, the standard deviations
are compared with the root mean square of the residuals for the different
parts of the data. The residuals for particular taxa are examined by location
and depth. Figure 6 shows the residuals for one particular pigment, ChlC1,
which is uniquely associated with the phytoplankton taxon Diatom A. The
changing convexity of the normal probability plot suggests the residuals have a
mixture distribution of multiple components and there are occasional extreme
outliers associated with phytoplankton blooms that occur near the Antarctic
sea-ice boundary where the waters are relatively rich in nutrients especially
iron. The analysis by Wright et al. [10] shows that the abundance and
relative proportions of different taxa vary considerably with latitude, depth
and longitude (the latter a weaker effect relating to topography and ocean
currents). One might hope that these systematic effects are fully confined to
the fitted values of S( = CF), but the fitted line plots of the log;,(|residuals|)
indicate that these factors influence the residuals as well (P-value < 0.001 for
each relationship). A comparison of the standard deviations of the residuals
with the mean assumed standard deviation T = 0.01S° 4 0.0003 indicates
that T could be too large or too small for particular taxa by an order of
magnitude. Since T is used solely for weighting purposes this just means that
some taxa may have slightly more influence on the final fit than they ‘should’
(in the light of their variability) but the same is also true of the CHEMTAX
algorithm. A full analysis of the residuals is beyond the scope of this article,
but these results suggest that there is room for further improvement in the
model.

The preceding sections focussed on the mathematical task of converting from
S and F° to estimates C and F. The elements of S° and F° are assumed to
be measured accurately (to small standard deviation) and each sample (row
of §%) is treated as an independent observation. The approach is applicable
to settings other than phytoplankton. It does not make any (statistical)
distributional assumptions about the sampling errors, nor does it pay attention
to skewness in the errors. We now turn to a statistical approach that addresses
these latter issues.
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8 A Bayesian approach

A Bayesian approach to this problem was considered by Meersche et al. [6].
They recommend their approach for relatively small numbers of samples
compared to those considered here. A statistical solution may be appropriate
in this application since the matrix S° is measured with sampling error and the
parameters consist of the unknown elements in C and F. In theory, a statistical
approach would allow us to quantify the accuracy of C and F, where these
are regarded as estimates of unobserved mean taxa and pigment proportions
for each location. Unfortunately, such direct measures of uncertainty are not
available in the approaches detailed above. A Bayesian approach is particularly
attractive since there is prior information on the parameters of the F matrix.
Furthermore, there are various constraints on the parameters that can be
easily handled in a Bayesian framework via the choice of appropriate prior
probability distributions.

Bayesian analysis proceeds via the posterior distribution of C and F when
S is given, that is, Pr(C,F | S°), which is proportional to the likelihood (of
the model for the observed data) multiplied by the prior (contains informa-
tion about the model parameters before data is collected). The posterior
distribution thus contains the combined information about the parameters
held in the prior and the observed data. For notational simplicity we assume
that each element of the matrix F is unknown but it is straightforward to
extend the results below to the case where some elements of F are fixed. The
posterior is

Pr(C,F|S°%) o« Pr(S°| C,F) Pr(C,F), (12)

where Pr(S° | C,F) is the likelihood of S° given C and F, and Pr(C,F) is
the prior distribution of C and F. Meersche et al. [6] assume that C and F
are independent a priori, producing Pr(C,F) = Pr(C) Pr(F). Furthermore,
the rows of C are independent, yielding Pr(C) = 1—[15\1:1 Pr(cs), where cg
corresponds to the sth row of C and N is the number of samples. The
only prior information on such rows is that the sum must equal one. This
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constraint can be implemented using a Dirichlet distribution for each row.
The ‘no information’ aspect can be handled by setting all the parmeters of
the Dirichlet distribution equal to one. From this we have Pr(cg) o< 1T and
the posterior of interest simplifies to

Pr(C,F| S°) o« Pr(S°| C,F) Pr(F). (13)

The non-zero unknown elements of the matrix F contain prior information
in the form of a mean, E(F¢;,) = e, and variance, Var(F;,) = vip, , where
Fip denotes the random variable of the ratio for the tth taxon and pth pigment,
and e, and vy, are given. Furthermore, there is a positive constraint on such
parameters. Meersche et al. [6] choose to give each element a Gamma prior
distribution, F, ~ Gamma(o p, Btp) (although other models such as the log
Normal distribution seem just as plausible). The parameters &, and By
can be computed by solving simultaneously E(F¢,) = ot p/Brp = €rp and
Var(Fip) = ¢ p/ nyp = Vi p for o p and Byp. This result arises by considering
the expectation and variance of a Gamma random variable. Given the above
and assuming independence amongst the elements of F, the following prior is
obtained:

Pr(F) = H Gamma(Fyp; & p, Bep)- (14)

t,ped®

where @ is as in section 3. Now that the prior distribution is derived, the
model for the data, Pr(S° | C,F), is required to complete the specification.
It is assumed that the variance of each sample in S°, Var(ngp) = Vs IS
known. Furthermore, given the parameters, Meersche et al. [6] assume that
the mean is given by the sth row of C multiplied by the pth column of F,
E(Sgp) = ZL] CstFtp = Wsp . To handle the positive constraint Meersche et
al. [6] give Sgp a Gamma distribution with parameters o, and 3, such that

O‘s,p/[?’s,p = Hsp and O‘s,p/B?,p =Vsp- (15)

Unfortunately, the posterior does not have a recognisable distribution. A
popular approach to overcome this is to produce approximate samples from the
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posterior distribution using Markov chain Monte Carlo (MCMC) techniques [7].
In this approach a Markov chain is constructed whose stationary distribution
is given by the joint posterior of the parameters. Inference on the marginal
distributions proceeds by ignoring the samples of other parameters since the
algorithm automatically integrates them out via Monte Carlo integration.

Meersche et al. [6] implemented a particular type of MCMC algorithm known
as the random walk Metropolis—Hastings sampler [2]. This approach proceeds
as follows. Given a current value of the parameter 0 (here 8 = (C,F)), we
propose a 0* from Pr(0* | 0) and accept the proposal with probability

— (1’ Pr(y | 8%) Pr(6%) Pr(6 | e*)) |

Pr(y [ ©) Pr(6) Pr(6* | 0) (16)

where Pr(y | 0) is the likelihood of data y and Pr(0) is the prior distribution.

Meersche et al. [6] use a multivariate proposal such that the elements of F are
proposed from a Normal random walk and each row of C is proposed from a
Dirichlet jump distribution. This approach relies on the proposal parameters
being tuned to achieve a desired acceptance probability. Too large jumps will
often fall in regions of negligible posterior probability and result in a very
low acceptance rate. Too small jumps will mean the acceptance probability
is very high but the samples will be highly correlated and it will take an
excessively long time for the full posterior support to be visited in the correct
proportions.

Meersche et al. [6] provided some recommendations for the tuning of param-
eters of the proposal distribution, but they did not mention an additional
problem, the curse of dimensionality. Roberts and Rosenthal [8] show that the
optimal acceptance probability decreases with the number of parameters. In
high dimensional problems such as this one, such an approach would appear
difficult in practice. To compensate for the required low acceptance rate,
small jumps will be used to increase the acceptance probability, ensuring that
unacceptably long runs of the chain may be required to be confident that the
full posterior space is explored appropriately.
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An alternative scheme that may overcome such issues involves a Metropolis—
Hastings within a Gibbs sampler. In the Gibbs set up, we derive full con-
ditionals for each parameter, which is the probability distribution of the
parameter of interest given all the other parameters and the data. Thus
we attempt to update only one parameter at a time while fixing the rest
(but block updates are still possible of course). If we cannot sample from
the full conditionals directly, then we use a Metropolis—Hastings sampler
to obtain approximate samples from the full conditionals. Furthermore, for
the parameters with a substantial amount of prior information, it may be
more appropriate to use an independent proposal distribution from the prior.
This is an efficient update if the data do not provide much extra information
about the parameter, implying that effectively independent draws are being
generated from the posterior. Such approaches require further investigation.

9 Conclusions

The taxonomic analysis problem is a positive matrix factorisation problem,
which can be expressed as a nonlinear least squares minimisation problem
with non-negative constraints. The solution can be made unique by including
prior information on one of the factors.

It is proposed that the best results are obtained by fitting to the original data
before scaling and using standard deviations to ensure the error terms are
weighted according to their accuracy. The use of standard deviations and
prior information means that the results will not be identical to the previous
program developed for this problem. It would be helpful if in future some
repeat measurements are taken so that actual data standard deviations can
be used.

The error terms, being bilinear, can be divided into two non-negative least
squares problems, that can be solved alternatively with iterations that progres-
sively reduce the target sum of squares. In Matlab the standard non-negative
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least squares algorithm proved significantly slower than an adaptation of
an algorithm proposed by Lee and Seung [4]. However, an occasional appli-
cation of the non-negative least squares algorithm was found to speed the
convergence.

Tests indicate a slow but satisfactory convergence to an accurate minimum.
Bootstrap techniques can be used to obtain an estimate of the accuracy of
the results. The taxa concentrations can be examined to determine variation
with location and depth. The residual errors contain information that can be
investigated to determine model deficiencies.

Bayesian methods provide an alternative analysis method that provide signif-
icantly more statistical information on the distribution of each of the taxa
concentrations. As the taxon by sample matrix contains a large number
of samples, convergence of the Bayesian methods is much slower than the
optimisation approach. The method proposed by Meersche et al. [6] seems
incapable of handling the size of data matrices that are needed in some
applications of the problem, and a Bayesian method that takes advantage of
the problem structure seems more appropriate.
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